Synthesis 2015; 47(18): 2756-2766
DOI: 10.1055/s-0034-1380221
special topic
© Georg Thieme Verlag Stuttgart · New York

Hexahydro-1H-Isoindolinone-Like Scaffolds from Electronically Deactivated and Sterically Hindered Dienes: Synthesis in the Context­ of Muironolide A

Christopher A. Olson
Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA   eMail: tmitche@ilstu.edu
,
Courtnay E. Shaner
Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA   eMail: tmitche@ilstu.edu
,
Sydney C. Roche
Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA   eMail: tmitche@ilstu.edu
,
Gregory M. Ferrence
Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA   eMail: tmitche@ilstu.edu
,
T. Andrew Mitchell*
Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA   eMail: tmitche@ilstu.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 30. April 2015

Accepted after revision: 05. Juni 2015

Publikationsdatum:
05. August 2015 (online)


Abstract

Initial synthetic efforts toward muironolide A based upon an intramolecular Diels–Alder strategy were hampered by a conjugate reduction rather than the desired half-reduction. An intermolecular Diels–Alder strategy was initiated that utilized electronically deactivated and sterically hindered dienes. The [4+2] cycloadditions were successful, but only with highly reactive dipolarophiles such as N-phenylmaleimide and 4-phenyl-1,2,4-triazoline-3,5-dione thus establishing the scope of these dienes. Although limited, installation of the α,β-unsaturated lactam embedded in the hexahydro-1H-isoindolinone is noteworthy.

Supporting Information

 
  • References

    • 1a Dalisay DS, Morinaka BI, Skepper CK, Molinski TF. J. Am. Chem. Soc. 2009; 131: 7552
    • 1b Flores B, Molinski TF. Org. Lett. 2011; 13: 3932
    • 1c Xiao Q, Young K, Zakarian A. Org. Lett. 2013; 15: 3314
    • 1d Shaner CE, Ferrence GM, Mitchell TA. Synlett 2013; 24: 1861
    • 2a MacMillan JB, Xiong-Zhou G, Skepper CK, Molinski TF. J. Org. Chem. 2008; 73: 3699
    • 2b Skepper CK, MacMillan JB, Zhou GX, Masuno MN, Molinski TF. J. Am. Chem. Soc. 2007; 129: 4150
    • 3a Searle PA, Molinski TF. J. Am. Chem. Soc. 1995; 117: 8126
    • 3b Searle PA, Molinski TF, Brzezinski LJ, Leahy JW. J. Am. Chem. Soc. 1996; 118: 9422
    • 3c Molinski TF. Tetrahedron Lett. 1996; 37: 7879
  • 4 Haustedt LO, Hartung IV, Hoffmann HM. R. Angew. Chem. Int. Ed. 2003; 42: 2711
  • 5 Molinski reported moderate anticancer and antifungal activity (see ref. 1a).
  • 6 Takao K, Munakata R, Tadano K. Chem. Rev. 2005; 105: 4779
  • 7 Xiao Q, Young K, Zakarian A. J. Am. Chem. Soc. 2015; 137: 5907
  • 8 It was also established that the synthesized enantiomer of muironolide was opposite to that which was isolated (see ref. 7).
  • 9 Coleman RS, Liu P.-H. Org. Lett. 2004; 6: 577
    • 10a Dittami JP, Xu F, Qi H, Martin MW, Bordner J, Decosta DL, Kiplinger J, Reiche P, Ware R. Tetrahedron Lett. 1995; 36: 4197
    • 10b Dubs P, Scheffold R. Helv. Chim. Acta 1967; 50: 798
  • 11 Bischofberger N, Waldmann H, Saito T, Simon ES, Lees W, Bednarski MD, Whitesides GM. J. Org. Chem. 1988; 53: 3457
    • 12a Baum JS, Shook DA, Davies HM. L, Smith HD. Synth. Commun. 1987; 17: 1709
    • 12b Davies HM. L, Cantrell WR. Jr, Romines KR, Baum JS. Org. Synth. Coll. Vol. 9 . Wiley; New York: 1998: 422
    • 13a Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
    • 13b Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2003; 110: 704
    • 14a Whitehouse DL, Nelson KH, Savinov SN, Lowe RS, Austin DJ. Bioorg. Med. Chem. Lett. 1998; 6: 1273
    • 14b Brown DS, Elliot MC, Moody CJ, Mowlem TJ, Marion JP. Jr, Padwa A. J. Org. Chem. 1994; 59: 2447
    • 15a Pedregal C, Ezquerra J, Escribano A, Carreno MC, Ruano JL. G. Tetrahedron Lett. 1994; 35: 2053
    • 15b Langois N, Rojas A. Tetrahedron Lett. 1993; 34: 2477
  • 16 The anti-diastereomer 12 is presumed to be favored.
  • 17 Liu H, Yang Z, Pan Z. Org. Lett. 2014; 16: 5902 ; and references cited therein
  • 18 Ramachary DB, Shashank AB, Karthik S. Angew. Chem. Int. Ed. 2014; 53: 10420 ; and references cited therein
    • 20a Swamy KC. K, Kumar NN. B, Balaraman E, Kumar KV. P. P. Chem. Rev. 2009; 109: 2551
    • 20b Smith III AB, Simov V. Org. Lett. 2006; 8: 3315
  • 21 Parenty A, Moreau X, Campagne J.-M. Chem. Rev. 2006; 106: 911
  • 22 Lager E, Sundin A, Toscano RA, Delgado G, Sterner O. Tetrahedron Lett. 2007; 48: 4215
  • 23 Ohno M, Mori K, Hattori T, Eguchi S. J. Org. Chem. 1995; 55: 6086
  • 24 Baron A, Verdie P, Martinez J, Lamaty F. J. Org. Chem. 2011; 76: 766
  • 25 Kawamoto AM, Willis M. J. Chem. Soc., Perkin Trans. 1 2001; 1916
  • 26 Clemens RJ, Hyatt JA. J. Org. Chem. 1985; 50: 2431
  • 27 Kuwahara S, Moriguchi M, Miyagawa K, Kono M, Kodama O. Tetrahedron Lett. 1995; 36: 3201
  • 28 Milne JC, Jirousek MR, Bemis JE, Smith JJ. Patent WO 2010/006085A1, 2010 ; Chem. Abstr. 2010, 152, 144374.
  • 29 Luche JL. J. Am. Chem. Soc. 1978; 100: 2226
  • 30 Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
  • 31 Evans DA, Chapman KT, Bisaha J. J. Am. Chem. Soc. 1998; 110: 1238
    • 32a Chen P.-K, Rosana MR, Dudley GB, Stiegman AE. J. Org. Chem. 2014; 79: 7425
    • 32b Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
  • 33 Bruker APEX2 . Bruker AXS Inc; Madison (WI, USA): 2014
  • 34 Farrugia LJ. J. Appl. Crystallogr. 1999; 32: 837
  • 35 McArdle P. J. Appl. Crystallogr. 1996; 29: 306
  • 36 Palatinus L, Chapuis G. J. Appl. Crystallogr. 2007; 40: 786
  • 37 Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3
  • 38 Farrugia LJ. J. Appl. Crystallogr. 2012; 45: 849
  • 39 CCDC-1402326 and CCDC-940982 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://summary.ccdc.cam.ac.uk/structure-summary?ccdc=940982+1402326.