Synlett 2015; 26(06): 709-715
DOI: 10.1055/s-0034-1380121
synpacts
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Cross-Couplings of Organometallic Reagents with and without Assistance from PN Ligands

Ramesh Giri*
Department of Chemistry and Chemical Biology, The University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA   Email: rgiri@unm.edu
,
Surendra Thapa
Department of Chemistry and Chemical Biology, The University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA   Email: rgiri@unm.edu
› Author Affiliations
Further Information

Publication History

Received: 28 November 2014

Accepted after revision: 27 December 2014

Publication Date:
05 February 2015 (eFirst)

Abstract

In this article, recent developments of copper-catalyzed cross-couplings are discussed. Critical results that demonstrate the effectiveness of copper catalysts, ligated by P,N-ligands, for cross-coupling reactions are presented to showcase the potential emergence of copper as an alternative to palladium. The observation that the reaction of heteroaryl coupling partners also proceeds under ‘ligand-free’ conditions holds great promise for developing copper catalysis as a complementary system to palladium catalysis in areas in which palladium either performs unsatisfactorily or requires custom-designed ligands.

1 Introduction

2 Rationale for the Use of Hybrid Bidentate Ligands

3 Coupling with Organosilicon Reagents

4 Coupling with Organoboron Reagents

5 Coupling with Organoindium Reagents

6 General Catalytic Cycle

7 Conclusion and Perspectives

 
  • References

  • 1 Diederich F, Stang PJ. Metal-Catalyzed Cross-Coupling Reactions . Wiley-VCH; Weinheim: 1998
    • 2a Rouhi AM. Chem. Eng. News 2004; 82: 49
    • 2b Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
  • 3 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
  • 4 Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. Nat. Rev. Drug Discovery 2010; 9: 203
    • 5a Gladysz JA. Chem. Rev. 2002; 102: 3215
    • 5b Cole-Hamilton DJ. Science 2003; 299: 1702

      For selected examples, see:
    • 7a Powell DA, Maki T, Fu GC. J. Am. Chem. Soc. 2004; 127: 510
    • 7b Fischer C, Fu GC. J. Am. Chem. Soc. 2005; 127: 4594
    • 7c Strotman NA, Sommer S, Fu GC. Angew. Chem. Int. Ed. 2007; 46: 3556
    • 7d Saito B, Fu GC. J. Am. Chem. Soc. 2007; 129: 9602
  • 8 Unlike nickel and palladium, copper is an essential element for biological processes in the human body. However, some ligated forms of copper are known to be toxic depending on the ligand environment. For evaluation of the toxicity of some copper complexes, see: Kennedy DC, McKay CS, Legault MC. B, Danielson DC, Blake JA, Pegoraro AF, Stolow A, Mester Z, Pezacki JP. J. Am. Chem. Soc. 2011; 133: 17993
    • 9a Alexakis A, Backvall JE, Krause N, Pamies O, Dieguez M. Chem. Rev. 2008; 108: 2796
    • 9b Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem. Rev. 2008; 108: 2824
  • 10 Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
    • 11a Takeda T, Matsunaga KI, Kabasawa Y, Fujiwara T. Chem. Lett. 1995; 771
    • 11b Falck JR, Bhatt RK, Ye J. J. Am. Chem. Soc. 1995; 117: 5973
    • 11c Allred GD, Liebeskind LS. J. Am. Chem. Soc. 1996; 118: 2748

      For selected examples, see:
    • 12a Cahiez G, Gager O, Buendia J. Angew. Chem. Int. Ed. 2010; 49: 1278
    • 12b Terao J, Todo H, Begum SA, Kuniyasu H, Kambe N. Angew. Chem. Int. Ed. 2007; 46: 2086
    • 12c Yang C.-T, Zhang Z.-Q, Liang J, Liu J.-H, Lu X.-Y, Chen H.-H, Liu L. J. Am. Chem. Soc. 2012; 134: 11124

      For selected examples, see:
    • 13a Okuro K, Furuune M, Enna M, Miura M, Nomura M. J. Org. Chem. 1993; 58: 4716
    • 13b Gujadhur RK, Bates CG, Venkataraman D. Org. Lett. 2001; 3: 4315
    • 13c Monnier F, Turtaut F, Duroure L, Taillefer M. Org. Lett. 2008; 10: 3203

      For selected examples, see:
    • 14a Thathagar MB, Beckers J, Rothenberg G. Adv. Synth. Catal. 2003; 345: 979
    • 14b Li J.-H, Wang D.-P. Eur. J. Org. Chem. 2006; 2063
    • 14c Yang C.-T, Zhang Z.-Q, Liu Y.-C, Liu L. Angew. Chem. Int. Ed. 2011; 50: 3904
  • 15 Liwosz TW, Chemler SR. Org. Lett. 2013; 15: 3034
  • 16 Van Hoveln RJ, Schmid SC, Schomaker JM. Org. Biomol. Chem. 2014; 12: 7655
    • 17a Kochi JK. J. Organomet. Chem. 2002; 653: 11
    • 17b Ribas X, Jackson DA, Donnadieu B, Mahía J, Parella T, Xifra R, Hedman B, Hodgson KO, Llobet A, Stack TD. P. Angew. Chem. Int. Ed. 2002; 41: 2991
    • 17c Smith KM. Organometallics 2005; 24: 778
  • 18 Kochi JK. Acc. Chem. Res. 1974; 7: 351
  • 19 Gurung SK, Thapa S, Kafle A, Dickie DA, Giri R. Org. Lett. 2014; 16: 1264
  • 20 Thapa S, Gurung SK, Dickie DA, Giri R. Angew. Chem. Int. Ed. 2014; 53: 11620
  • 21 Wyss CM, Tate BK, Bacsa J, Wieliczko M, Sadighi JP. Polyhedron 2014; 84: 87
  • 22 Walsh A, Catlow CR. A, Galvelis R, Scanlon DO, Schiffmann F, Sokol AA, Woodley SM. Chem. Sci. 2012; 3: 2565
    • 23a Gurung SK, Thapa S, Vangala AS, Giri R. Org. Lett. 2013; 15: 5378
    • 23b Gurung SK, Thapa S, Shrestha B, Giri R. Synthesis 2014; 46: 1933
  • 24 Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
    • 25a Herron JR, Ball ZT. J. Am. Chem. Soc. 2008; 130: 16486
    • 25b Russo V, Herron JR, Ball ZT. Org. Lett. 2009; 12: 220
    • 25c Herron JR, Russo V, Valente EJ, Ball ZT. Chem. Eur. J. 2009; 15: 8713
  • 26 Ito H, Sensui H.-o, Arimoto K, Miura K, Hosomi A. Chem. Lett. 1997; 26: 639
  • 27 Tsubouchi A, Muramatsu D, Takeda T. Angew. Chem. Int. Ed. 2013; 52: 12719
    • 28a Cornelissen L, Lefrancq M, Riant O. Org. Lett. 2014; 16: 3024
    • 28b Cornelissen L, Cirriez V, Vercruysse S, Riant O. Chem. Commun. 2014; 50: 8018
  • 29 Yang Y, Niedermann K, Han C, Buchwald SL. Org. Lett. 2014; 16: 4638
    • 30a Li J.-H, Li J.-L, Wang D.-P, Pi S.-F, Xie Y.-X, Zhang M.-B, Hu X.-C. J. Org. Chem. 2007; 72: 2053
    • 30b Li J.-H, Li J.-L, Xie Y.-X. Synthesis 2007; 984
  • 31 Zhou Y, You W, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
    • 32a Pérez I, Sestelo JP, Sarandeses LA. J. Am. Chem. Soc. 2001; 123: 4155
    • 32b Chen Y.-H, Knochel P. Angew. Chem. Int. Ed. 2008; 47: 7648
  • 33 Nomura R, Miyazaki S, Matsuda H. J. Am. Chem. Soc. 1992; 114: 2738
    • 34a Costa G, Camus A, Gatti L, Marsich N. J. Organomet. Chem. 1966; 5: 568
    • 34b Hofstee HK, Boersma J, Van Der Kerk GJ. M. J. Organomet. Chem. 1978; 144: 255
    • 34c Olmstead MM, Power PP. J. Am. Chem. Soc. 1990; 112: 8008
    • 35a Leoni P, Pesquali M, Ghilardi CA. J. Chem. Soc., Chem. Commun. 1983; 240
    • 35b Miyasuta A, Yamamoto A. J. Organomet. Chem. 1976; 113: 187
    • 36a Nilsson M, Wennerstrom O. Acta Chem. Scand. 1970; 24: 482
    • 36b Whitesides GM, Fischer WF, San Filippo J, Bashe RW, House HO. J. Am. Chem. Soc. 1969; 91: 4871
    • 36c Do H.-Q, Khan RM. K, Daugulis O. J. Am. Chem. Soc. 2008; 130: 15185
    • 36d Corey EJ, Posner GH. J. Am. Chem. Soc. 1968; 90: 5615
  • 37 Whittaker AM, Rucker RP, Lalic G. Org. Lett. 2010; 12: 3216
  • 38 For early evidence of organosilicon to copper transmetalation, see: Franz AK, Woerpel KA. J. Am. Chem. Soc. 1999; 121: 949
  • 39 Lee KS, Hoveyda AH. J. Org. Chem. 2009; 74: 4455
  • 40 Rodríguez D, Sestelo JP, Sarandeses LA. J. Org. Chem. 2003; 68: 2518
    • 41a Tye JW, Weng Z, Johns AM, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 9971
    • 41b Jones GO, Liu P, Houk KN, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 6205
    • 41c Tye JW, Weng Z, Giri R, Hartwig JF. Angew. Chem. Int. Ed. 2010; 49: 2185
    • 42a Stille JK, Lau KS. Y. Acc. Chem. Res. 1977; 10: 434
    • 42b Halpern J. Acc. Chem. Res. 1970; 3: 386