Synlett 2015; 26(12): 1683-1686
DOI: 10.1055/s-0034-1379929
letter
© Georg Thieme Verlag Stuttgart · New York

Gold- and Silver-Catalyzed Glycosylation with Pyranone Glycosyl Donors: An Efficient and Diastereoselective Synthesis of α-Anomers

Wenfeng Liu
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. of China   Email: qianchen@gdut.edu.cn
,
Qian Chen*
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. of China   Email: qianchen@gdut.edu.cn
,
Jiashen Liang
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. of China   Email: qianchen@gdut.edu.cn
,
Zhiyun Du
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. of China   Email: qianchen@gdut.edu.cn
,
Kun Zhang
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. of China   Email: qianchen@gdut.edu.cn
,
Xi Zheng
a   School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. of China   Email: qianchen@gdut.edu.cn
,
George A. O’Doherty
b   Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
› Author Affiliations
Further Information

Publication History

Received: 19 January 2015

Accepted after revision: 04 May 2015

Publication Date:
25 June 2015 (online)


Abstract

A mild, efficient and diastereoselective gold- and silver-catalyzed O-glycosylation with pyranone glycosyl donors is described. The reactions led to the formation of α-anomers in up to 91% yield with good diastereoselectivities.

Supporting Information

 
  • References and Notes

    • 1a Rohr J, Thiericke R. Nat. Prod. Rep. 1992; 9: 103
    • 1b Krohn K, Rohr J. Top. Curr. Chem. 1997; 188: 127
    • 1c Andriy L, Andreas V, Andreas B. Mol. BioSyst. 2005; 1: 117
    • 1d Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, Shaaban KA, Rohr J. Nat. Prod. Rep. 2012; 29: 264
    • 1e Yu B, Sun J, Yang X. Acc. Chem. Res. 2012; 45: 1227
    • 2a Toshima K, Tatsuta K. Chem. Rev. 1993; 93: 1503
    • 2b Fügedi P In The Organic Chemistry of Sugars . Levy DE, Fügedi P. CRC Press; Boca Raton: 2006: 89-179
    • 3a Li Y, Yang Y, Yu B. Tetrahedron Lett. 2008; 49: 3604
    • 3b Li Y, Yang X, Liu Y, Zhu C, Yang Y, Yu B. Chem. Eur. J. 2010; 16: 1871
    • 3c Yang Y, Li Y, Yu B. Tetrahedron Lett. 2010; 51: 1504
    • 3d Ma Y, Lian G, Li Y, Yu B. Chem. Commun. 2011; 47: 7515
    • 3e Zhu Y, Yu B. Angew. Chem. Int. Ed. 2011; 50: 8329
    • 3f Tang Y, Li J, Zhu Y, Li Y, Yu B. J. Am. Chem. Soc. 2013; 135: 18396
    • 4a Babu RS, O’Doherty GA. J. Am. Chem. Soc. 2003; 125: 12406
    • 4b Babu RS, Zhou M, O’Doherty GA. J. Am. Chem. Soc. 2004; 126: 3428
    • 4c Li M, Scott JG, O’Doherty GA. Tetrahedron Lett. 2004; 45: 1005
    • 4d Li M, O’Doherty GA. Tetrahedron Lett. 2004; 45: 6407
    • 4e Babu RS, O’Doherty GA. J. Carb. Chem. 2005; 24: 169
    • 4f Guo H, O’Doherty GA. Angew. Chem. Int. Ed. 2007; 46: 5206
    • 4g Guo H, O’Doherty GA. J. Org. Chem. 2008; 73: 5211
    • 4h Iyer A, Zhou M, Azad N, Elbaz H, Wang L, Rogalsky DK, Rojanasakul Y, O’Doherty GA, Langenhan JM. ACS Med. Chem. Lett. 2010; 1: 326
    • 4i Wang H.-YL, Xin W, Zhou M, Stueckle TA, Rojanasakul Y, O’Doherty GA. ACS Med. Chem. Lett. 2011; 2: 73
    • 4j Wang H.-YL, Wu B, Zhang Q, Rojanasakul Y, O’Doherty GA. ACS Med. Chem. Lett. 2011; 2: 259
    • 4k Wang H.-YL, Rojanasakul Y, O’Doherty GA. ACS Med. Chem. Lett. 2011; 2: 264
    • 4l Babu RS, Chen Q, Kang S.-W, Zhou M, O’Doherty GA. J. Am. Chem. Soc. 2012; 134: 11952
    • 5a Zhou M, O’Doherty GA. Org. Lett. 2008; 10: 2283
    • 5b Guo H, O’Doherty GA. J. Org. Chem. 2008; 73: 5211
    • 5c Yu X, O’Doherty GA. Org. Lett. 2008; 10: 4529
    • 5d Chen Q, Zhong Y, O’Doherty GA. Chem. Commun. 2013; 49: 6806
    • 6a Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
    • 6b Zhang L, Sun J, Kozmin SA. Adv. Synth. Catal. 2006; 348: 2271
    • 6c Michelet V, Toullec PY, Genêt J.-P. Angew. Chem. Int. Ed. 2008; 47: 4268
    • 6d Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
    • 6e Krause N, Winter C. Chem. Rev. 2011; 111: 1994
    • 6f Rudolph M, Hashmi AS. K. Chem. Soc. Rev. 2012; 41: 2448
    • 7a Ye L, Chen Q, Zhang J, Michelet V. J. Org. Chem. 2009; 74: 9550
    • 7b Pradal A, Chen Q, Faudot dit Bel P, Toullec PY, Michelet V. Synlett 2012; 23: 74
    • 7c Chen Q, Zhang C, Wen C, Fang J, Du Z, Wu D. Catal. Commun. 2014; 56: 101
  • 8 General Procedure for Gold- and Silver-Catalyzed Glycosylation: To a solution of glycosyl donor l-3 (0.40 mmol) and the appropriate alcohol (0.80 mmol) in anhyd THF (2.0 mL) was added AuCl3 or AgSbF6 (0.020 mmol) at –20 °C under nitrogen atmosphere. The mixture was stirred at –20 °C for 30 min. After removal of the solvent under reduced pressure, the residue was then purified by flash column chromatography on silica gel using an appropriate eluent to give the desired glycoside. α-l-5a: colorless oil; [α]D 21 +21.5 (c = 0.5, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 6.80 (dd, J = 10.2, 3.5 Hz, 1 H), 6.05 (d, J = 10.2 Hz, 1 H), 5.33 (d, J = 3.5 Hz, 1 H), 4.59 (t, J = 6.8 Hz, 1 H), 3.64–3.72 (m, 1 H), 1.95–1.98 (m, 1 H), 1.72–1.88 (m, 3 H), 1.46–1.68 (m, 7 H), 0.94–1.38 (m, 20 H), 1.37 (d, J = 6.8 Hz, 3 H), 0.89 (d, J = 6.4 Hz, 3 H), 0.87 (d, J = 1.6 Hz, 3 H), 0.85 (d, J = 1.6 Hz, 3 H), 0.80 (s, 3 H), 0.64 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 197.29, 144.17, 127.20, 91.36, 77.89, 70.28, 56.48, 56.31, 54.38, 44.84, 42.61, 40.04, 39.53, 37.11, 36.19, 35.79, 35.62, 35.50, 34.54, 32.08, 29.34, 28.85, 28.25, 28.01, 24.22, 23.84, 22.81, 22.56, 21.25, 18.68, 15.27, 12.25, 12.08. ESI-MS: m/z = 499.2 [M+ + H]. α-l-5g: white solid; mp 126–127 °C; [α]D 21 +105.3 (c = 0.5, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 6.82 (dd, J = 10.2, 3.5 Hz, 1 H), 6.07 (d, J = 10.2 Hz, 1 H), 5.28 (d, J = 3.5 Hz, 1 H), 4.79–4.86 (m, 2 H), 4.08–4.12 (m, 2 H), 3.64–3.68 (m, 1 H), 3.52–3.55 (m, 1 H), 3.36 (s, 3 H), 1.57 (s, 3 H), 1.37 (d, J = 6.7 Hz, 3 H), 1.34 (s, 3 H), 1.30 (d, J = 6.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 197.62, 142.75, 127.51, 109.25, 98.04, 93.28, 80.21, 77.13, 76.15, 70.72, 64.75, 54.90, 28.15, 26.38, 17.48, 15.21. ESI–MS: m/z = 329.1 [M+ + H].