Synthesis 2015; 47(15): 2217-2222
DOI: 10.1055/s-0034-1379928
special topic
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Conjugate Addition of Alkylzirconocenes to Cyclopent-4-ene-1,3-dione Monoacetals

Emeline Rideau
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK   stephen.fletcher@chem.ox.ac.uk
,
Florian Mäsing
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK   stephen.fletcher@chem.ox.ac.uk
,
Stephen P. Fletcher*
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK   stephen.fletcher@chem.ox.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 27 March 2015

Accepted after revision: 06 May 2015

Publication Date:
01 July 2015 (online)


Abstract

Copper-catalyzed asymmetric conjugate additions are powerful reactions that allow the formation of single-enantiomer building blocks in a few steps. However, highly enantioselective conjugate addition to five-membered-ring substrates is more challenging and is often neglected. Here, we report catalytic asymmetric 1,4-addition of alkylzirconocenes, formed in situ from readily available alkenes, to cyclopent-4-ene-1,3-dione monoacetals. Good to high enantioselectivities are observed and the procedure tolerates various functional groups.

Supporting Information

 
  • References

    • 1a Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem. Rev. 2008; 108: 2824
    • 1b Copper-Catalyzed Asymmetric Synthesis . Alexakis A, Krause N, Woodward S. Wiley-VCH; Weinheim: 2014
    • 1c Krause N, Hoffmann-Röder A. Synthesis 2001; 171
    • 1d Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829
    • 1e Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
    • 1f Maksymowicz RA, Bissette AJ, Fletcher SP. Chem. Eur. J. 2015; 21: 5668
    • 2a Feringa BL. Acc. Chem. Res. 2000; 33: 346
    • 2b Krause N. Angew. Chem. Int. Ed. 1998; 37: 283
    • 2c Kanai M, Nakagawa Y, Tomioka K. Tetrahedron 1999; 55: 3843
  • 3 Degrado SJ, Mizutani H, Hoveyda AH. J. Am. Chem. Soc. 2001; 123: 755
    • 4a Brown MK, Hoveyda AH. J. Am. Chem. Soc. 2008; 130: 12904
    • 4b Jansen DJ, Shenvi RA. J. Am. Chem. Soc. 2013; 135: 1209
    • 4c Sunazuka T, Hirose T, Shirahata T, Harigaya Y, Hayashi M, Komiyama K, Ōmura S, Smith AB. J. Am. Chem. Soc. 2000; 122: 2122
    • 4d Arnold LA, Naasz R, Minnaard AJ, Feringa BL. J. Am. Chem. Soc. 2001; 123: 5841
    • 5a Maksymowicz RM, Roth PM. C, Fletcher SP. Nat. Chem. 2012; 4: 649
    • 5b Sidera M, Roth PM. C, Maksymowicz RM, Fletcher SP. Angew. Chem. Int. Ed. 2013; 52: 7995
    • 5c Maksymowicz RM, Roth PM. C, Thompson AL, Fletcher SP. Chem. Commun. 2013; 49: 4211
    • 5d Maksymowicz RM, Sidera M, Roth PM. C, Fletcher SP. Synthesis 2013; 45: 2662
    • 5e Roth PM. C, Sidera M, Maksymowicz RM, Fletcher SP. Nat. Protoc. 2014; 9: 104
    • 5f Maciver EE, Maksymowicz RM, Wilkinson N, Roth PM. C, Fletcher SP. Org. Lett. 2014; 16: 3288
    • 5g Roth PM. C, Fletcher SP. Org. Lett. 2015; 17: 912
    • 5h You H, Rideau E, Sidera M, Fletcher SP. Nature 2015; 517: 351
    • 5i Mola L, Sidera M, Fletcher SP. Aust. J. Chem. 2015; 68: 401
    • 5j Sidera M, Fletcher SP. Chem. Commun. 2015; 51: 5044
  • 6 Arnold LA, Naasz R, Minnaard AJ, Feringa BL. J. Org. Chem. 2002; 67: 7244