Synthesis 2015; 47(11): 1567-1580
DOI: 10.1055/s-0034-1379902
paper
© Georg Thieme Verlag Stuttgart · New York

Azo-Compound-Mediated Cyanoalkylation of Alkenes by Copper Catalysis: General Access to Cyano-Substituted Oxindoles

Shi Tang*
a  College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, P. R. of China
,
Dong Zhou
a  College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, P. R. of China
,
Zhi-Hao Li
a  College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, P. R. of China
b  Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: stang@jsu.edu.cn   Email: rlsheng@sioc.ac.cn
,
Mei-Jun Fu
a  College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, P. R. of China
,
Li Jie
a  College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, P. R. of China
,
Rui-Long Sheng*
b  Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: stang@jsu.edu.cn   Email: rlsheng@sioc.ac.cn
,
Shu-Hua Li
a  College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 07 January 2015

Accepted after revision: 15 February 2015

Publication Date:
26 March 2015 (online)


Abstract

A practical and highly efficient azo-compound-mediated/ promoted radical cyanoalkylation of activated alkenes by copper catalysis was developed, which allowed for general synthesis of oxindoles bearing various nitrile moieties, especially the rarely reported 3° nitrile moiety via cascade radical addition/C(sp2)–H cyclization. This protocol demonstrates that DIAD served for a new promoter instead of usual Ag salts or bases in the C(sp3)–H functionalization of acetonitrile for the first time. The use of readily available AIBN and beyond as the radical sources, and inexpensive copper as the catalyst, as well as the simplicity of operation and handling, make this protocol an attractive access to therapeutically important cyano-substituted oxindoles.

Supporting Information

 
  • References

    • 1a Posner GH. Chem. Rev. 1986; 1: 831
    • 1b Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 1c Aplay D, Dong G. Sci. China Chem. 2013; 56: 685

      For selected examples on the oxindole synthesis via radical mechanism, see:
    • 2a Fu W, Xu F, Fu Y, Zhu M, Yu J, Xu C, Zou D. J. Org. Chem. 2013; 78: 12202
    • 2b Tang S, Zhou D, Deng Y, Yang Y, He J, Wang Y. Sci. China Chem. 2015; 58: 684
    • 2c Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J. Org. Chem. 2014; 79: 446
    • 2d Pan C, Han J, Zhang H, Zhu C. J. Org. Chem. 2014; 79: 5374
    • 2e Zhou B, Hou W, Yang Y, Feng H, Li Y. Org. Lett. 2014; 16: 13225
    • 2f Peng J, Chen C, Chen J, Su X, Xi C, Chen H. Org. Lett. 2014; 16: 3776
    • 2g Egami H, Shimizu R, Kawamura S, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 4000 ; Angew. Chem. 2013, 125, 4092
    • 2h Wang J, Zhang X, Bao Y, Xu Y, Cheng X, Wang X. Org. Biomol. Chem. 2014; 12: 5582
    • 2i Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
    • 2j Dai Q, Yu J, Jiang Y, Guo S, Yang H, Cheng J. Chem Commun. 2014; 50: 3865
    • 2k Xu P, Xie J, Xue Q, Pan C, Cheng Y, Zhu C. Chem. Eur. J. 2013; 19: 14039
    • 2l Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638; Angew. Chem. 2013, 125, 3725
    • 2m Zhou S.-L, Guo L.-N, Wang H, Duan X.-H. Chem. Eur. J. 2013; 19: 12970
    • 2n Li Z, Zhang Y, Zhang L, Liu Z. Org. Lett. 2014; 16: 382
    • 2o Zhang L, Li Z, Liu Z.-Q. Org. Lett. 2014; 16: 3688
    • 2p Xu Z, Yan C, Liu Z.-Q. Org. Lett. 2014; 16: 5670
    • 2q Tian Y, Liu Z.-Q. RSC Adv. 2014; 4: 64855
  • 3 For a rare example on C–H functionalization by using azo compounds, see: Yu W, Sit WN, Lai K, Zhou Z, Chan AS. C. J. Am. Chem. Soc. 2008; 130: 3304
    • 4a Stork GP, Sher M, Chen HL. J. Am. Chem. Soc. 1986; 108: 6384
    • 4b Curran DP In Comprehensive Organic Synthesis . Trost BM, Fleming I. Pergamon; Oxford: 1991

    • For reviews, see:
    • 4c Clayden J, Greeves N, Warren S. Organic Chemistry . 2nd ed. Oxford University Press; Oxford: 2012: 1047
  • 5 For a rare Heck-type example, see: Fan J, Wei W, Zhou M, Song R, Li J. Angew. Chem. Int. Ed. 2014; 53: 6650 ; Angew. Chem. 2014, 126, 6768

    • For unpredictable addition polymerization of styrene with AIBN in polymer synthesis, see:
    • 6a Gasanov RG, Tumanskii BL. Russ. Chem Bull. 2002; 51: 240
    • 6b Ford WT, Nishioka T, Melleskey SC, Mourey TH, Kahol P. Macromolecules 2000; 33: 2413
    • 7a Vetter AJ, Rieth RD, Jones WD. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 6957
    • 7b Evans ME, Li T, Jones WD. J. Am. Chem. Soc. 2010; 132: 16278
    • 7c Crestani M, Steffen A, Kenwright A, Batsanov A, Howard J, Marder T. Organometallics 2009; 28: 2904
    • 7d Oertel A, Ritleng V, Chetcut M, Veiros L. J. Am. Chem. Soc. 2010; 132: 13588
    • 7e Derrah E, Giesbrecht K, McDonald R, Rosenberg L. Organometallics 2008; 27: 5025

      In general, catalytic C–H functionalization of MeCN [pK a (MeCN) ~31.3 in DMSO] required a strong base for deprotonation, see, Pd/NaN(SiMe3)2:
    • 8a Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 9330
    • 8b You J, Verkade JG. Angew. Chem. Int. Ed. 2003; 42: 5051 ; Angew. Chem. 2003, 115, 5205
    • 8c Schranck J, Burhardt M, Bornschein C, Neumann H, Skrydstrup T, Beller M. Chem. Eur. J. 2014; 20: 9534

    • Ru/DBU:
    • 8d Kumagai N, Matsunage S, Shibasaki M. J. Am. Chem. Soc. 2004; 126: 13632

    • Base-free copper-oxidative C–H functionalization of acetonitrile has rarely been reported; for close examples using bases, see: CuCl2/KOH:
    • 8e Shen J, Yang D, Liu Y, Qin S, Zhang J, Sun J, Liu C, Liu C, Zhang X, Chu C, Liu R. Org. Lett. 2014; 16: 350

    • Cu(OAc)2/K3PO4:
    • 8f Bunescu A, Wang Q, Zhu J. Chem. Eur. J. 2014; 20: 14633
    • 9a Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74 ; Angew. Chem. 2014, 126, 76
    • 9b Hirano K, Miura M. Chem. Commun. 2012; 48: 10704
    • 9c Liu C, Zhang H, Lei A. Chem. Rev. 2011; 111: 1780
    • 10a Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062 ; Angew. Chem. 2011, 123, 11256
    • 10b Chemler SR, Fuller PH. Chem. Soc. Rev. 2007; 36: 1153
    • 10c Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 10d Zabawa TP, Kasi D, Chemler SR. J. Am. Chem. Soc. 2005; 127: 11250
    • 10e Zeng W, Chemler SR. J. Am. Chem. Soc. 2007; 129: 12948
    • 10f Fuller PH, Kim J.-W, Chemler SR. J. Am. Chem. Soc. 2008; 130: 17638
    • 10g Paderes MC, Chemler SR. Eur. J. Org. Chem. 2011; 3679
    • 10h Miller Y, Miao L, Hosseini AS, Chemler SR. J. Am. Chem. Soc. 2012; 134: 12149
    • 10i Zhao B, Peng X, Cui S, Shi Y. J. Am. Chem. Soc. 2010; 132: 11009
    • 10j Zhao B, Peng X, Zhu Y, Ramirez TA, Cornwall RG, Shi Y. J. Am. Chem. Soc. 2011; 133: 20890
    • 10k Wang Y.-F, Zhu X, Chiba S. J. Am. Chem. Soc. 2012; 134: 3679
    • 10l Li J, Neuville L. Org. Lett. 2013; 15: 1752

      For reviews, see:
    • 11a Trost BM, Brennan MK. Synthesis 2009; 3003
    • 11b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748 ; Angew. Chem. 2007, 119, 8902
    • 11c Marti C, Carreira E. Eur. J. Org. Chem. 2003; 2209
    • 11d Klein JE. M. N, Taylor RJ. K. Eur. J. Org. Chem. 2011; 6821
    • 12a Wu T, Mu X, Liu G.-S. Angew. Chem. Int. Ed. 2011; 50: 12578 ; Angew. Chem. 2011, 123: 12786
    • 12b Wang LZ, Wu N, Gao G, You J. Chem. Commun. 2014; 50: 15049
    • 12c Pan C, Zhang H, Zhu C. Org. Biomol. Chem. 2015; 13: 361
    • 13a Tang S, Yu Q, Peng P, Li J, Zhong P, Tang R. Org. Lett. 2007; 9: 3413
    • 13b Tang S, Peng P, Wang Z, Deng C, Li J, Zhong P, Wang N. Org. Lett. 2008; 10: 1875
    • 13c Tang S, Peng P, Liang Y, Wang N, Li J. Org. Lett. 2008; 10: 1179
    • 13d Tang S, Zhou D, Wang Y. Eur. J. Org. Chem. 2014; 3565
    • 13e Tang S, Li Q, Zhou D, Tang X, Li S. Synth. Commun. 2014; 44: 689
    • 13f Tang S, Li Z, Zhou D, Li S, Sheng R. Tetrahedron Lett. 2015; 56: 1423
  • 14 Although a catalytic combination of CuCl and t-BuOOt-Bu reported by You and co-workers could lead to oxindole 4a efficiently at 120 °C, the comparable combination of CuI and t-BuOOt-Bu turned out to be less efficient under current temperature conditions (95 °C) in the absence of DIAD, which resulted in <5% product yield.
    • 15a Jones WD. Acc. Chem. Res. 2003; 36: 140
    • 15b Pinto A, Neuville L, Retailleau P, Zhu J. Org. Lett. 2006; 8: 4927
    • 15c Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 16a Gephart RT. III, McMullin CL, Sapiezynski NG, Jang ES, Aguila MJ. B, Cundari TR, Warren TH. J. Am. Chem. Soc. 2012; 134: 17350
    • 16b Kochi JK. J. Am. Chem. Soc. 1963; 85: 1958

      In view of GC/MS results, DIAD was completely consumed after the reaction proceeds under standard conditions over 20 h, and some amount of side-products such as i-PrOCO2 i-Pr, i-PrOC2Ot-Bu was also observed. These results could suggest that DIAD is subject to decompose to form radical i-PrO2C, which is responsible for the generation of radical CH2CN under current reaction conditions. For recent examples using diazonium salts as radical initiator, see:
    • 17a Liu Y, Zhang J, Song R, Li J. Org. Chem. Front. 2014; 1: 1289
    • 17b Zhang J, Liu Y, Song R, Jiang G, Li J. Synlett 2014; 25: 1031
    • 18a Yu Q.-S, Luo W, Holloway HW, Utsuki T, Perry T, Lahiri DK, Greig NH, Brossi A. Heterocycles 2003; 61: 529
    • 18b Matsuura T, Overman LE, Poon DJ. J. Am. Chem. Soc. 1998; 120: 6500
    • 18c Nakao Y, Ebata S, Yada A, Hiyama T, Ikawa M, Ogoshi S. J. Am Chem. Soc. 2008; 130: 12874