Synlett 2015; 26(03): 323-326
DOI: 10.1055/s-0034-1379539
cluster
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Allylation of α-Amido Sulfones To Form Protected Homoallylic Amines

Jill A. Caputo
Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA   Fax: +1(585)2760205   Email: daniel.weix@rochester.edu
,
Marina Naodovic
Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA   Fax: +1(585)2760205   Email: daniel.weix@rochester.edu
,
Daniel J. Weix*
Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA   Fax: +1(585)2760205   Email: daniel.weix@rochester.edu
› Author Affiliations
Further Information

Publication History

Received: 02 September 2014

Accepted after revision: 21 October 2014

Publication Date:
07 January 2015 (online)


Abstract

The allylation of stable, protected imine precursors, α-amido sulfones, with allylic acetates to form homoallylic amines is catalyzed by nickel under mild reducing conditions. Aliphatic and aryl imines are tolerated, as are substituted allylic acetates. In the case of substituted allylic acetates, high diastereoselectivity and regioselectivity is observed in some cases and the branched product is obtained almost exclusively.

Supporting Information

 
  • References and Notes

  • 1 Bertrand MB, Wolfe JP. Org. Lett. 2006; 8: 2353
  • 2 Grainger RS, Welsh EJ. Angew. Chem. Int. Ed. 2007; 46: 5377
    • 3a Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
    • 3b Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
  • 4 Bloch R. Chem. Rev. 1998; 98: 1407
  • 5 Another promising strategy is the in situ formation of the imine. For a recent example, see: Gandhi S, List B. Angew. Chem. Int. Ed. 2013; 52: 2573
    • 6a Reddy LR, Hu B, Prashad M, Prasad K. Org. Lett. 2008; 10: 3109
    • 6b Sun X.-W, Xu M.-H, Lin G.-Q. Org. Lett. 2006; 8: 4979
    • 7a Naodovic M, Wadamoto M, Yamamoto H. Eur. J. Org. Chem. 2009; 5129
    • 7b Feske MI, Santanilla AB, Leighton JL. Org. Lett. 2010; 12: 688
    • 8a Nakamura H, Nakamura K, Yamamoto Y. J. Am. Chem. Soc. 1998; 120: 4242
    • 8b Gastner T, Ishitani H, Akiyama R, Kobayashi S. Angew. Chem. Int. Ed. 2001; 40: 1896
    • 8c Keck GE, Enholm EJ. J. Org. Chem. 1985; 50: 146
    • 9a Alam R, Das A, Huang G, Eriksson L, Himo F, Szabó KJ. Chem. Sci. 2014; 5: 2732
    • 9b Barker TJ, Jarvo ER. Org. Lett. 2009; 11: 1047
    • 9c Das A, Alam R, Eriksson L, Szabó KJ. Org. Lett. 2014; 16: 3808
    • 9d Vieira EM, Snapper ML, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 3332
    • 9e Lou S, Moquist PN, Schaus SE. J. Am. Chem. Soc. 2007; 129: 15398
    • 9f Bishop JA, Lou S, Schaus SE. Angew. Chem. Int. Ed. 2009; 48: 4337
    • 9g Chakrabarti A, Konishi H, Yamaguchi M, Schneider U, Kobayashi S. Angew. Chem. Int. Ed. 2010; 49: 1838
    • 9h Schneider U, Chen IH, Kobayashi S. Org. Lett. 2008; 10: 737
    • 9i Silverio DL, Torker S, Pilyugina T, Vieira EM, Snapper ML, Haeffner F, Hoveyda AH. Nature (London, U.K.) 2013; 494: 216
    • 10a Sun X, Liu M, Xu M, Lin G. Org. Lett. 2008; 10: 1259
    • 10b Foubelo F, Yus M. Eur. J. Org. Chem. 2014; 485
    • 10c Tan KL, Jacobsen EN. Angew. Chem. Int. Ed. 2007; 46: 1315
    • 10d Kargbo R, Takahashi Y, Bhor S, Cook GR, Lloyd-Jones GC, Shepperson IR. J. Am. Chem. Soc. 2007; 129: 3846
    • 11a Sebelius S, Wallner OA, Szabó KJ. Org. Lett. 2003; 5: 3065
    • 11b Barros OS. d. R, Sirvent JA, Foubelo F, Yus M. Chem. Commun. 2014; 50: 6898
  • 12 An alternative strategy is the aza-Cope reaction, see: Ren H, Wulff WD. J. Am. Chem. Soc. 2011; 133: 5656
  • 13 Paulo G, Gosmini C, Périchon J. Lett. Org. Chem. 2004; 1: 105
    • 14a Durandetti M, Gosmini C, Périchon J. Tetrahedron 2007; 63: 1146
    • 14b Zhao C, Tan Z, Liang Z, Deng W, Gong H. ­Synthesis 2014; 46: 1901
  • 15 Tan Z, Wan X, Zang Z, Qian Q, Deng W, Gong H. Chem. Commun. 2014; 50: 3827
    • 16a Petrini M, Profeta R, Righi P. J. Org. Chem. 2002; 67: 4530
    • 16b Yin B, Zhang Y, Xu L. Synthesis 2010; 3583
    • 16c Zaugg HE. Synthesis 1984; 85
    • 16d Engberts JB. F. N, Strating J. Recl. Trav. Chim. Pays-Bas 1965; 84: 942
    • 16e Kobayashi T, Ishida N, Hiraoka T. J. Chem. Soc., Chem. Commun. 1980; 736
    • 16f Brown DS, Hansson T, Ley SV. Synlett 1990; 48
  • 17 Zhang H, Lian C, Yuan W, Zhang X. Synlett 2012; 23: 1339
  • 18 We get substantially the same results with a preformed imine.
  • 19 Crystallographic data for the compound reported in Table 2, entry 5 has been deposited with the Cambridge Crystallographic Data Centre (CCDC 1022004). This data can be obtained free of charge from the CCDC at http://www.ccdc.cam.ac.uk/ data_request/cif.
  • 20 Gong observed similar diastereoselectivity with crotyl acetate for the reductive allyation of aldehydes using nickel. See ref. 15.
    • 21a Cahiez G, Duplais C, Buendia J. Chem. Rev. 2009; 109: 1434
    • 21b Reetz MT, Rölfing K, Griebenow N. Tetrahedron Lett. 1994; 35: 1969
    • 22a Lu W, Chan TH. J. Org. Chem. 2000; 65: 8589
    • 22b Liu M, Shen A, Sun X, Deng F, Xu M, Lin G. Chem. Commun. 2010; 46: 8460
    • 22c Hirabayashi R, Ogawa C, Sugiura M, Kobayashi S. J. Am. Chem. Soc. 2001; 123: 9493
  • 23 Everson DA, George DT, Weix DJ. Org. Synth. 2013; 90: 200
  • 24 Typical Procedure for the Allylation of α-Amido SulfonesOn the benchtop, an oven-dried 1-dram vial equipped with a Teflon-coated stir bar was charged with 4,4′-di-tert-butyl-2,2′-bipyridine (2.7 mg, 0.0100 mmol), NiCl2(dme) (2.0 mg, 0.0100 mmol), tert-butyl cyclohexyl(phenylsulfonyl)methylcarbamate (177 mg, 0.500 mmol, 1.00 equiv), N,N-dimethylacetamide (DMA) (1.00 mL), a solution of cinnamyl acetate (91.8 μL, 0.550 mmol, 1.10 equiv in 1.00 mL DMA), Et3N (1.40 μL, 0.0100 mmol), dodecane (10.0 μL), and Mn0 (54.9 mg, 1.00 mmol). The reaction vial was then capped with a screw cap fitted with a PTFE-faced silicone septum and stirred (1200 rpm) at 40 °C. After 19 h, the reaction mixture was then filtered through a short silica pad (1.5 cm wide × 2 cm high), and the pad was washed with Et2O (75 mL) before the filtrate was concentrated in vacuo. The residue was then purified by flash chromatography (hexanes–acetone, 95:5) to afford the pure homoallylic amine (Table 2, entry 5) as a white solid (124 mg, 75% yield). X-ray crystallography confirmed that the syn isomer was obtained; mp 101–103 °C. Due to the existence of rotamers at ambient temperature, the 1H NMR spectrum was obtained at 55 °C: 1H NMR (400 MHz, CDCl3, 55 °C): δ = 7.28–7.15 (m, 5 H), 6.03 (dt, J = 17.1, 8.8 Hz, 1 H), 5.09–5.05 (m, 2 H), 4.06 (br s, 1 H), 3.86 (br s, 1 H), 3.43 (t, J = 8.2 Hz, 1 H), 1.29 (s, 9 H), 1.75–0.86 (series of m, 11 H). 13C NMR (126 MHz, CDCl3): δ = 155.9, 141.6, 139.8, 128.5, 128.4, 126.5, 115.9, 78.8, 57.7, 52.9, 39.4, 31.2, 28.4, 28.3, 26.5, 26.4, 26.3. IR: 3341, 2924, 1678, 1535, 1173 cm–1. LRMS (ESI+): m/z = 352.3 [M + Na+]. HRMS (ESI+): m/z [M + H+] calcd for C21H32NO2: 330.243; found: 330.244. X-ray quality crystals were grown by slow evaporation of acetone.