Synlett 2014; 25(20): 2891-2894
DOI: 10.1055/s-0034-1379481
letter
© Georg Thieme Verlag Stuttgart · New York

Chemoselective Zinc/HCl Reduction of Halogenated β-Nitrostyrenes: Synthesis of Halogenated Dopamine Analogues

Justin J. Maresh*
,
Arthur A. Ralko
,
Tom E. Speltz
,
James L. Burke
,
Casey M. Murphy
,
Zachary Gaskell
,
JoAnn K. Girel
,
Erin Terranova
,
Conrad Richtscheidt
,
Mark Krzeszowiec
Further Information

Publication History

Received: 13 June 2014

Accepted after revision: 22 September 2014

Publication Date:
29 October 2014 (online)


Abstract

A detailed account regarding the synthesis of 2- and 5-halogenated dopamine is given. The key step is a chemoselective reduction of a nitrostyrene by Zn/HCl at 0 °C. These conditions represent a simple, low-cost alternative to reduction by water-sensitive hydride donors and two-step procedures. Under these conditions, aryl fluoride, chloride, and bromide groups are stable. However, ­iodine undergoes significant reductive dehalogenation.

Supporting Information

 
  • References

  • 1 Hagel JM, Facchini PJ. Plant. Cell. Physiol. 2013; 54: 647
    • 2a Deb Roy A, Gruschow S, Cairns N, Goss RJ. J. Am. Chem. Soc. 2010; 132: 12243
    • 2b Runguphan W, O’Connor SE. Org. Lett. 2013; 15: 2850
  • 3 Parhi A, Lu S, Kelley C, Kaul M, Pilch DS, LaVoie EJ. Bioorg. Med. Chem. Lett. 2012; 22: 6962
  • 4 Weinstock J, Ladd DL, Wilson JW, Brush CK, Yim NC. F, Gallagher GJr, McCarthy ME, Silvestri J, Sarau HM. J. Med. Chem. 1986; 29: 2315
    • 5a Appendino G, Daddario N, Minassi A, Moriello AS, De Petrocellis L, Di Marzo V. J. Med. Chem. 2005; 48: 4663
    • 5b Vallejos G, Fierro A, Rezende MC, Sepúlveda-Boza S, Reyes-Parada M. Bioorg. Med. Chem. 2005; 13: 4450
  • 6 Clark MT, Miller DD. J. Org. Chem. 1986; 51: 4072
  • 7 Speltz T. Precursor-Directed Biosynthesis of Non-natural Berberine and Galanthamine Analogues. MS Thesis. Depaul University; Chicago, IL: 2011
  • 8 Ladd DL, Weinstock J. J. Org. Chem. 1981; 46: 203
  • 9 McKillop A, Fiaud JC, Hug RP. Tetrahedron 1974; 30: 1379
  • 10 Andrew RG, Raphael RA. Tetrahedron 1987; 43: 4803
  • 11 McCarthy JR, McCowan J, Zimmerman MB, Wenger MA, Emmert LW. J. Med. Chem. 1986; 29: 1586
  • 12 McNulty J, Steere JA, Wolf S. Tetrahedron Lett. 1998; 39: 8013
  • 13 Ramirez FA, Burger A. J. Am. Chem. Soc. 1950; 72: 2781
  • 14 Karabatsos GJ, Shone RL. J. Org. Chem. 1968; 33: 619
  • 15 Bulychev BM, Verbetskii VN, Storozhenko PA. Zh. Neorg. Khim. 2008; 53: 1000
  • 16 Kabalka GW, Guindi LH. M, Varma RS. Tetrahedron 1990; 46: 7443
  • 17 Kohno M, Sasao S, Murahashi S. Bull. Chem. Soc. Jpn. 1990; 63: 1252
  • 18 Pradhan PK, Dey S, Jaisankar P, Giri VS. Synth. Commun. 2005; 35: 913
  • 19 Elsner J, Boeckler F, Davidson K, Sugden D, Gmeiner P. Bioorg. Med. Chem. 2006; 14: 1949
  • 20 Ankner T, Hilmersson G. Tetrahedron Lett. 2007; 48: 5707
  • 21 Reed AB, Lanman BA, Neira S, Harrington PE, Sham KK. C, Frohn M, Pickrell AJ, Tasker AS, Gore A, Fiorino M, Itano A, McElvain M, Middleton S, Morrison H, Xu H, Xu Y, Wong M, Cee VJ. Bioorg. Med. Chem. Lett. 2012; 22: 1779
    • 22a Xi B.-M, Jiang Z.-Z, Zou J.-W, Ni P.-Z, Chen W.-H. Bioorg. Med. Chem. 2011; 19: 783
    • 22b Xi B.-M, Jiang Z.-Z, Wang T, Ni P.-Z. Chin. J. Med. Chem. 2008; 18: 401
    • 23a Delaby R, Tsatsas G, Jendrot MC. Bull. Soc. Chim. Fr. 1960; 231
    • 23b Tolkachev ON, Chernova VP, Kuznetsova EV, Pao F.-L, Preobrazhenskii NA. Zh. Obshch. Khim. 1964; 34: 545
  • 24 Tashiro M, Fukata G. J. Org. Chem. 1977; 42: 835