Synlett 2014; 25(18): 2574-2578
DOI: 10.1055/s-0034-1379109
letter
© Georg Thieme Verlag Stuttgart · New York

New Synthetic Approach for the Preparation of 1-Aryl-3,4-dihydro­isoquinolines by Liebeskind–Srogl Reaction

Péter Ábrányi-Balogh*
a   Egis Pharmaceuticals Plc., Chemical Research Division, P.O. Box 100, 1475 Budapest, Hungary
b   Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, P.O. Box 91, 1521 Budapest, Hungary   Email: abpeter@gmail.com
,
Péter Slégel
a   Egis Pharmaceuticals Plc., Chemical Research Division, P.O. Box 100, 1475 Budapest, Hungary
,
Balázs Volk
a   Egis Pharmaceuticals Plc., Chemical Research Division, P.O. Box 100, 1475 Budapest, Hungary
,
László Pongó
a   Egis Pharmaceuticals Plc., Chemical Research Division, P.O. Box 100, 1475 Budapest, Hungary
,
Mátyás Milen
a   Egis Pharmaceuticals Plc., Chemical Research Division, P.O. Box 100, 1475 Budapest, Hungary
b   Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, P.O. Box 91, 1521 Budapest, Hungary   Email: abpeter@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 03 July 2014

Accepted after revision: 18 August 2014

Publication Date:
07 October 2014 (online)


Dedicated to Professor József Reiter on the occasion of his 75th birthday

Abstract

An efficient synthetic methodology has been developed to construct 1-aryl-3,4-dihydroisoquinoline derivatives. The reaction was performed under neutral conditions by a palladium-catalyzed desulfitative carbon–carbon cross-coupling protocol.

Supporting Information

 
  • References and Notes

    • 2a Alcock NW, Brown JM, Hulmes GI. Tetrahedron: Asymmetry 1993; 4: 743
    • 2b Lim CW, Tissot O, Mattison A, Hooper MW, Brown JM, Cowley AR, Hulmes DI, Blacker AJ. Org. Process Res. Dev. 2003; 7: 379
    • 2c Chen C, Li X, Schreiber S.-L. J. Am. Chem. Soc. 2003; 125: 10174
    • 2d Fernández E, Guiry PJ, Connole KP. T, Brown JM. J. Org. Chem. 2014; 79: 5391
    • 3a Su JY, Huang HL, Li CL, Chien CH, Tao YT, Chou PT, Datta S, Liu RS. Adv. Mater. 2003; 15: 884
    • 3b Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K. J. Am. Chem. Soc. 2003; 125: 12971
    • 3c Fang K.-H, Wu L.-L, Huang Y.-T, Yang C.-H, Sun I.-W. Inorg. Chim. Acta 2006; 359: 441
    • 4a Bernan VS, Montenegro DA, Korshalla JD, Maiese WM, Steinberg DA, Greenstein M. J. Antibiot. 1994; 47: 1417
    • 4b Tiwari RK, Singh D, Singh J, Chhillar AK, Chandra R, Verma AK. Eur. J. Med. Chem. 2006; 41: 40
    • 5a Capilla AS, Romero M, Pujol MD, Caignard DH, Renard P. Tetrahedron 2001; 57: 8297
    • 5b Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
  • 6 Kumar P, Dhawan KN, Kishore K, Bhargava KP. J. Heterocycl. Chem. 1982; 19: 677
  • 7 Urverg-Ratsimamanga S, Rasoanaivo P, Rafatro H, Robijaona B, Rakato-Ratsimamanga A. Ann. Trop. Med. Parasitol. 1994; 88: 271
    • 8a Cheng P, Huang N, Jiang ZY, Zhang Q, Zheng YT, Chen JJ, Zhang XM, Ma YB. Bioorg. Med. Chem. Lett. 2008; 18: 2475
    • 8b Chen KX, Xie HY, Li ZG, Gao JR. Bioorg. Med. Chem. Lett. 2008; 18: 5381
  • 9 Liu LT, Lin Y.-C, Wang C.-LJ, Lin M.-S, Yen S.-C, Chen H.-J. Bioorg. Med. Chem. Lett. 1996; 6: 1335
  • 10 Gitto R, Barecca ML, De Luca L, De Sarro G, Ferreri G, Quartarone S, Russo E, Constanti A, Chimirri A. J. Med. Chem. 2003; 46: 197
    • 11a Ohtaka A, Ukai M, Hatanaka T, Kobayashi S, Ikeda K, Sato S, Miyata K, Sasamata M. Eur. J. Pharmacol. 2004; 492: 243
    • 11b Smulders RA, Krauwinkel WJ, Swart PJ, Huang M. J. Clin. Pharmacol. 2004; 44: 1023
    • 11c Naito R, Yonetoku Y, Okamoto Y, Toyoshima A, Ikeda K, Takeuchi M. J. Med. Chem. 2005; 48: 6597
  • 12 Christopher JA, Atkinson FL, Bax BD, Brown MJ. B, Champigny AC, Chuang TT, Jones EJ, Mosley JE, Musgrave JR. Bioorg. Med. Chem. Lett. 2009; 19: 2230
  • 13 Bermejo A, Andreu I, Suvire F, Leonce S, Caignard DH, Renard P, Pierre A, Enriz RD, Cortes D, Cabedo N. J. Med. Chem. 2002; 45: 5058
    • 14a Worayuthakarn R, Thasana N, Ruchirawat S. Org. Lett. 2006; 8: 5845
    • 14b Boonya-udtayan S, Eno M, Ruchirawat S, Mahidol C, Thasana N. Tetrahedron 2012; 68: 10293
    • 14c Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
    • 15a Milen M, Ábrányi-Balogh P, Mucsi Z, Dancsó A, Körtvélyesi T, Keglevich G. Curr. Org. Chem. 2011; 15: 1811
    • 15b Milen M, Ábrányi-Balogh P, Mucsi Z, Dancsó A, Frigyes D, Pongó L, Keglevich G. Curr. Org. Chem. 2013; 17: 1894
    • 15c Ábrányi-Balogh P, Dancsó A, Frigyes D, Volk B, Keglevich G, Milen M. Tetrahedron 2014; 70: 5711
    • 16a Whaley WM, Govindachari TR. Organic Reactions . Roger Adams. John Wiley and Sons; New York: 1951. Vol. VI. 74-150
    • 16b Horne DB, Tamayo NA, Bartberger MD, Bo Y, Clarine J, Davis DD, Gore VK, Kaller MR, Lehto SG, Ma VV, Nishimura N, Nguyen TT, Tang P, Wang W, Youngblood BD, Zhang M, Gavva NR, Monenschein H, Norman MH. J. Med. Chem. 2014; 57: 2989
    • 16c Gray MM, Cheng BK, Mick SJ, Lair CM, Contreras PC. J. Med. Chem. 1989; 32: 1242
    • 17a Liebeskind LS, Srogl J. Org. Lett. 2002; 4: 979
    • 17b Prokopcová H, Kappe CO. Angew. Chem. Int. Ed. 2009; 48: 2276
    • 17c Alphonse F.-A, Suzenet F, Keromnes A, Lebret B, Guillaumet G. Synlett 2002; 447
    • 18a Milen M, Ábrányi-Balogh P, Dancsó A, Keglevich G. J. Sulfur Chem. 2012; 33: 33
    • 18b Milen M, Ábrányi-Balogh P, Dancsó A, Drahos L, Keglevich G. Heteroat. Chem. 2013; 24: 124
  • 19 Prokopcová H, Kappe CO. J. Org. Chem. 2007; 72: 4440
  • 20 General Procedure for the Synthesis of 1-Aryl-3,4-dihydroisoquinolines To the stirred solution of 1-(methylsulfanyl)-3,4-dihydroisoquinoline (1, 1.0 mmol, 0.18 g) in THF (10 mL) under argon atmosphere arylboronic acid (1.2 mmol), CuTC (3 equiv, 3.0 mmol, 0.57 g), and Pd(PPh3)4 (8 mol%, 0.08 mmol, 92 mg) were added. The reaction was followed by TLC and HPLC–MS. The mixture was refluxed until the starting material disappeared. After cooling, the solvent was evaporated and CHCl3–MeOH (7:1) mixture (50 mL) was added. The crude reaction mixture was subsequently washed with 25% aq NH3 (2 × 25 mL). The aqueous layer was extracted with CHCl3–MeOH (7:1) mixture (2 × 25 mL). The combined organic phase was dried over Na2SO4 and the residue after evaporation purified by flash chromatography (silica gel 60 PF254) using CH2Cl2–MeOH as the eluents. 1-[4-(Trifluoromethyl)phenyl]-3,4-dihydroisoquinoline (3c) Yield 0.21 g (76%), white crystals, mp 77–78 °C. IR (KBr): 2958, 1610, 1565, 1323, 1109, 846 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.73–7.68 (m, 4 H), 7.41–7.39 (m, 1 H), 7.30–7.24 (m, 2 H), 7.19–7.18 (m, 1 H), 3.90–3.67 (m, 2 H), 2.82 (t, J = 7.4 Hz, 2 H) ppm; lit.:22 1H NMR (400 MHz, CDCl3): δ = 7.70 (m, 4 H), 7.40 (m, 1 H), 7.26 (m, 2 H), 7.20 (m, 1 H), 3.88 (m, 2 H), 2.82 (m, 2 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 166.2, 142.5, 138.7, 131.2 (q, J = 33.0 Hz), 131.0, 129.2, 128.3, 127.6, 127.5, 126.7, 125.1 (q, J = 3.8 Hz), 124.1 (q, J = 272.0 Hz), 47.9, 26.2 ppm. HRMS: m/z calcd for C16H13NF3 [M + H]+: 276.1000; found: 276.1002. 4-(3,4-Dihydroisoquinolin-1-yl)benzaldehyde (3d) Yield 0.21 g (89%), pale yellow crystals, mp 102–104 °C. IR (KBr): 2940, 1702, 1604, 1203 cm–1. 1H NMR (500 MHz, CDCl3): δ = 10.09 (s, 1 H), 7.96–7.94 (m, 2 H), 7.78–7.76 (m, 2 H), 7.41–7.40 (m, 1 H), 7.30–7.28 (m, 1 H), 7.27–7.25 (m, 1 H), 7.19–7.17 (m, 1 H), 3.90 (t, J = 7.3 Hz, 2 H), 2.83 (t, J = 7.3 Hz, 2 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 191.8, 166.4, 144.8, 138.7, 136.8, 131.0, 129.5, 129.4, 128.3, 127.6, 127.4, 126.7, 47.9, 26.1 ppm. HRMS: m/z calcd for C16H14NO [M + H]+: 236.1075; found: 236.1081. Methyl 4-(3,4-Dihydroisoquinolin-1-yl)benzoate (3e) 21 Yield 0.23 g (85%), yellow oil. IR (film): 2950, 1724, 1610, 1279, 1104 cm–1. 1H NMR (500 MHz, CDCl3): δ = 8.11–8.09 (m, 2 H), 7.68–7.67 (m, 2 H), 7.42–7.38 (m, 1 H), 7.29–7.24 (m, 2 H), 7.19–7.18 (m, 1 H), 3.95 (s, 3 H), 3.90–3.87 (m, 2 H), 2.82 (t, J = 7.3 Hz, 2 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 166.8, 166.6, 143.3, 138.7, 130.9, 130.8, 129.4, 128.8, 128.4, 127.6, 127.5, 126.7, 52.2, 47.8, 26.2 ppm. HRMS: m/z calcd for C17H16NO2 [M + H]+: 266.1181; found: 266.1171. 4-(3,4-Dihydroisoquinolin-1-yl)-N,N-dimethylaniline (3f) Yield 0.08 g (32%), yellow crystals, mp 102–105 °C (MeCN). IR (KBr): 3444, 2888, 1608, 1525, 1346, 1195, 823 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.55–7.53 (m, 2 H), 7.40–7.36 (m, 2 H), 7.26–7.25 (m, 1 H), 6.74–6.73 (m, 2 H), 3.78 (t, J = 7.1 Hz, 2 H), 3.00 (s, 3 H), 2.76 (t, J = 7.1 Hz, 2 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 166.7, 151.3 139.3, 130.2, 130.0, 129.1, 128.2, 127.2, 126.7, 126.3, 111.5, 65.5, 40.4, 26.6 ppm. HRMS: m/z calcd for C17H19N2 [M + H]+: 251.1548; found: 251.1562. Benzyl [4-(3,4-Dihydroisoquinolin-1-yl)phenyl]-carbamate (3g) Yield 0.31 g (88%), white crystals, mp 194–195 °C (MeCN). IR (KBr): 3337, 2976, 1703, 1609, 1591, 1534, 1230, 1056, 744 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.57–7.55 (m, 2 H), 7.46–7.32 (m, 8 H), 7.31–7.21 (m, 3 H), 6.96 (s, 1 H), 5.22 (s, 2 H), 3.81 (t, J = 7.2 Hz, 2 H), 2.78 (t, J = 7.1 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 166.6, 153.2, 138.9, 135.9, 134.0, 130.6, 129.7, 128.7, 128.6, 128.4, 127.8, 127.4, 126.5, 118.0, 67.1, 47.5, 26.3 ppm. HRMS: m/z calcd for C23H21N2O2 [M + H]+: 357.1603; found: 357.1598. 1-(1,3-Benzodioxol-5-yl)-3,4-dihydroisoquinoline (3j) 22 Yield 0.18 g (71%), yellow oil. IR (film): 2940, 1600, 1486, 1440, 1232, 1039, 936, 746 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.38–7.36 (m, 1 H), 7.33–7.31 (m, 1 H), 7.28–7.24 (m, 2 H), 7.14–7.09 (m, 2 H), 6.86–6.84 (m, 1 H), 6.00 (s, 2 H), 3.82–3.78 (m, 2 H), 2.78 (t, J = 7.3 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 166.4, 148.6, 147.5, 139.0, 133.1, 130.6, 128.7, 127.9, 127.3, 126.5, 123.1, 109.3, 107.8, 101.2, 47.5, 26.3 ppm. HRMS: m/z calcd for C16H13NO2 [M+H]+: 251.0946; 251.0942. 1-(4-Fluorophenyl)-3,4-dihydroisoquinoline (3l) 23 Yield 0.20 g (89%), yellow crystals, mp 37–38 °C (hexane). IR (KBr): 2941, 1604, 1506, 1152, 847 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.61–7.58 (m, 2 H), 7.41–7.37 (m, 1 H), 7.28–7.24 (m, 3 H), 7.12–7.09 (m, 2 H), 3.83 (t, J = 7.1 Hz, 2 H), 2.80 (t, J = 7.2 Hz, 2 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 166.2, 163.5 (d, J = 249.0 Hz), 138.9, 135.1, 130.8, 130.7 (d, J = 8.3 Hz), 128.6, 127.7, 127.5, 126.6, 115.1 (d, J = 22.0 Hz), 47.6, 26.3 ppm. HRMS: m/z calcd for C15H13NF [M + H]+: 226.1032; found: 226.1033. 3-(3,4-Dihydroisoquinolin-yl)benzonitrile (3o) Yield 0.15 g (65%), pale yellow oil. IR (film): 2943, 2230, 1611, 1568, 1310, 708 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.93–7.92 (m, 1 H), 7.87–7.85 (m, 1 H), 7.74–7.72 (m, 1 H), 7.56–7.53 (m, 1 H), 7.44–7.41 (m, 1 H), 7.31–7.26 (m, 2 H), 7.17–7.15 (m, 1 H), 3.87 (t, J = 7.2 Hz, 2 H), 2.82 (t, J = 7.3 Hz, 2 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 165.4, 140.2, 138.7, 133.0, 132.7, 132.4, 131.2, 129.0, 127.9, 127.7, 127.2, 126.8, 118.4, 112.5, 47.8, 26.1 ppm. HRMS: m/z calcd for C16H13N2 [M + H]+: 233.1079; found: 233.1069. tert-Butyl [3-(3,4-Dihydroisoquinolin-1-yl)phenyl]-carbamate (3p) Yield 0.25 g (76%), yellow oil. IR (KBr): 3232, 2975, 1723, 1609, 1549, 1240, 1159, 777 cm–1. 1H NMR (500 MHz, DMSO-d 6): δ = 9.42 (s, 1 H), 7.74 (s, 1 H), 7.64–7.61 (m, 1 H), 7.56–7.53 (m, 1 H), 7.44 (t, J = 7.4 Hz, 1 H), 7.36–7.28 (m, 3 H), 7.16 (d, J = 7.5 Hz, 1 H), 7.10 (d, J = 7.5 Hz, 1 H), 3.71 (t, J = 7.2 Hz, 2 H), 2.73 (t, J = 7.2 Hz, 2 H) ppm. 13C NMR (125 MHz, DMSO-d 6): δ = 165.8, 152.9, 139.5, 139.3, 138.6, 130.8, 128.9, 128.4, 127.6, 127.3, 126.8, 122.4, 119.0, 118.3, 79.2, 47.1, 28.3, 25.8 ppm. HRMS: m/z calcd for C20H23N2O2 [M + H]+: 323.1760; found: 323.1743. 1-(2-Fluorophenyl)-3,4-dihydroisoquinoline (3s) 24 Yield 0.14 g (61%), yellow crystals, mp 79–80 °C (i-Pr2O). IR (KBr): 3444, 2946, 1612, 1447, 1210, 768 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.53–7.50 (m, 1 H), 7.44–7.36 (m, 2 H), 7.26–7.21 (m, 3 H), 7.13–7.07 (m, 2 H), 3.90 (br s, 2 H), 2.87 (br s, 2 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 163.9, 161.1, 160.0, 159.1, 137.2, 130.9, 130.8, 130.7, 127.4, 127.0 (d, J = 15.1 Hz), 124.3 (d, J = 3.4 Hz), 115.8 (d, J = 22.0 Hz), 94.8, 47.8, 26.0 ppm. HRMS: m/z calcd for C15H13NF [M + H]+: 226.1032; found: 226.1031. 1,1′-Benzene-1,4-diyldi-3,4-dihydroisoquinoline (3t) Yield 0.04 g (23%), white crystals, mp 198–199 °C (MeCN). IR (KBr): 3421, 2942, 1603, 1315 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.66–7.62 (m, 4 H), 7.48–7.45 (m, 2 H), 7.39–7.38 (m, 2 H), 7.36–7.32 (m, 2 H), 7.25–7.24 (m, 2 H), 3.76 (br s, 4 H), 2.77 (br s, 4 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 165.5, 139.4, 138.7, 130.9, 128.5, 127.8, 127.2, 126.9, 47.3, 25.8 ppm. HRMS: m/z calcd for C24H21N2 [M + H]+: 337.1705; found: 337.1711.
  • 21 Wall MD, Oshin M, Chung GA. C, Parkhouse T, Gore A, Herreros E, Cox B, Duncan K, Evans B, Everett M, Mendoza A. Bioorg. Med. Chem. Lett. 2007; 17: 2740
  • 22 Novikov SM, Khlebnikov AF, Shevchenko MV, Kostikov RR, Vidovic D. Russ. J. Org. Chem. 2005; 41: 1496
  • 23 Ahmed SA, Khairou KS, Asghar BH, Muathen HA, Nahas NM. A, Alshareef HF. Tetrahedron Lett. 2014; 55: 2190
  • 24 Shishikura J.-I, Inoue M, Ogiyama T, Yonezawa K, Yamaki S, Yokoyama K, Kakimoto S, Okada H. WO 2008143263, 2008 ; Chem. Abstr. 2008, 150, 5604