Synthesis 2015; 47(04): 481-484
DOI: 10.1055/s-0034-1378941
paper
© Georg Thieme Verlag Stuttgart · New York

Practical Synthesis of ε-Carotene

Chunlei Wu
a   Department of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. of China   Email: srunpu@usx.edu.cn   Email: wuchunlei2006@usx.edu.cn
,
Ruiwei Cao
b   Zhejiang Medicine Co., Ltd., Xinchang, Zhejiang 312500, P. R. of China
,
Xiaohua Song
a   Department of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. of China   Email: srunpu@usx.edu.cn   Email: wuchunlei2006@usx.edu.cn
,
Chunlei Lv
b   Zhejiang Medicine Co., Ltd., Xinchang, Zhejiang 312500, P. R. of China
,
Weidong Ye
b   Zhejiang Medicine Co., Ltd., Xinchang, Zhejiang 312500, P. R. of China
,
Shiqing Pi
b   Zhejiang Medicine Co., Ltd., Xinchang, Zhejiang 312500, P. R. of China
,
Chaohui Chen
b   Zhejiang Medicine Co., Ltd., Xinchang, Zhejiang 312500, P. R. of China
,
Runpu Shen*
a   Department of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. of China   Email: srunpu@usx.edu.cn   Email: wuchunlei2006@usx.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 17 July 2014

Accepted after revision: 07 November 2014

Publication Date:
05 December 2014 (online)


Abstract

A novel route for the total synthesis of ε-carotene is described. The synthesis is based on a condensation between α-cyclocitral and diethyl [(2E)-3-methoxy-2-methylprop-2-en-1-yl]phosphonate to give a C14 enol ether, hydrolysis of the C14-enol ether to a give a C14 aldehyde, and a modified Wittig–Horner reaction of the C15 phosphonate from the C14 aldehyde and a C10 triene dialdehyde to give ε-carotene. The synthetic steps are easily performed and are practical for large-scale production.

Supporting Information

 
  • References

    • 1a Maresca JA, Graham JE, Bryant DA. Photosynth. Res. 2008; 97: 121
    • 1b Cazzonelli CI. Funct. Plant. Biol. 2011; 38: 833
    • 2a Moliné M, Flores MR, Libkind D, Diéguez Mdel C, Farías ME, van Broock M. Photochem. Photobiol. Sci. 2010; 9: 1145
    • 2b Walter MH, Strack D. Nat. Prod. Rep. 2011; 28: 663
    • 3a Khachik F, Bertram JS, Huyang M.-T, Fahey JW, Talalay P In Antioxidant Food Supplements in Human Health . Packer L, Hiramatsu M, Yishikawa T. Academic Press; San Diego: 1999. Chap. 14, 203
    • 3b Erdman JW. Jr, Ford NA, Lindshield BL. Arch. Biochem. Biophys. 2009; 483: 229
    • 3c Zhang X, Zhao W.-e, Hu L, Zhao L, Huang J. Arch. Biochem. Biophys. 2011; 512: 96
    • 4a Manchandr PS, Rüegg R, Schwieter U, Siddons PT, Weedon BC. L. J. Chem. Soc. 1965; 2019
    • 4b Bienaymé H. Tetrahedron Lett. 1994; 35: 6867
    • 4c Babler JH, Harvey W. WO 2000031086, 2000 ; Chem. Abstr. 2000, 131, 310747
    • 4d Ernst H. Pure Appl. Chem. 2002; 74: 2213
    • 4e Guha SK, Koo S. J. Org. Chem. 2005; 70: 9662
    • 4f Pattenden G, Robson DC. Tetrahedron 2006; 62: 7477
    • 4g Valla A, Valla B, Le Guillou R, Cartier D, Dufossé L, Labia R. Helv. Chim. Acta 2007; 90: 512
    • 4h Fontán N, Vaz B, Álvarez R, de Lera ÁR. Chem. Commun. 2013; 49: 2694
    • 4i Crawford K, Mazzola E, Khachik F. Synthesis 2014; 46: 635
    • 5a Shen R, Jiang X, Ye W, Song X, Liu L, Lao X, Wu C. Tetrahedron 2011; 67: 5610
    • 5b Pi S, Shen R, Huang H, Xie B. DE 10164041, 2002 ; Chem. Abstr. 2005, 137, 295116
    • 5c Shen R, Pi S, Xie B. Hecheng Huaxue 2004; 5: 478
  • 6 Lavielle G. Bull. Soc. Chim. Fr. 1967; 11: 4186
  • 7 Shen R, Lao X, Ye W, Song X, Wu C, Sun X, Liu L, Hu S. CN 101792374, 2010 ; Chem. Abstr., 2010, 153, 310901.
    • 8a Babler JH, Schlidt SK. Tetrahedron Lett. 1992; 33: 7696
    • 8b Kiddle J, Babler JH. J. Org. Chem. 1993; 58: 3572
  • 9 Naegeli P. DE 2514815, 1975 ; Chem. Abstr. 1975, 84, 58769
  • 10 Uebelhart P, Baumeler A, Haag A, Prewo R, Bieri JH, Eugster CH. Helv. Chim. Acta 1986; 69: 816