Synthesis 2015; 47(22): 3573-3582
DOI: 10.1055/s-0034-1378735
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Hydroarylation of Alkynes for the Synthesis of Fascaplysin, Rutacarpine and Granulatimide Analogues

Subburethinam Ramesh
School of Chemistry, University of Hyderabad, Hyderabad-500 046, India   Email: rnsc@uohyd.ernet.in
,
Rajagopal Nagarajan*
School of Chemistry, University of Hyderabad, Hyderabad-500 046, India   Email: rnsc@uohyd.ernet.in
› Author Affiliations
Further Information

Publication History

Received: 18 March 2015

Accepted after revision: 21 May 2015

Publication Date:
21 August 2015 (online)


Abstract

An efficient copper-catalyzed π-activation protocol has been developed for the intramolecular hydroarylation of alkynes. The strategy has been used in atom-economical syntheses of β-carboline analogues. The cycloisomerized products were obtained in moderate to good yields.

Supporting Information

 
  • References

    • 1a Rosillo M, Gomez AG, Dominguez G, Pérez-Castells J. Targets Heterocycl. Syst. 2008; 12: 212
    • 1b Hu JF, Haman RT, Hill R, Kelly M. Alkaloids Chem. Biol. 2003; 60: 207
    • 1c Hesse M. Alkaloids: Nature’s Curse or Blessing . Wiley–VCH; Weinheim: 2002
    • 1d Lounasmaa M, Hanhinen P, Westersund M. Alkaloids Chem. Biol. 1999; 52: 103
    • 1e Saxton JE. Alkaloids Chem. Biol. 1998; 51: 1
    • 1f Magnier E, Langlois Y. Tetrahedron 1998; 54: 6201
    • 1g Cao R, Peng W, Wang Z, Xu A. Curr. Med. Chem. 2007; 14: 479
    • 2a Soni R, Muller L, Furet P, Schoepfer J, Stephan C, Zunstein-Mecker S, Fretz H, Chaudhuri B. Biochem. Biophys. Res. Commun. 2000; 275: 877
    • 2b Roll DM, Ireland CM, Lu HS. M, Clardy J. J. Org. Chem. 1988; 53: 3276
    • 3a Heo SK, Yun HJ, Yi HS, Noh EK, Park SD. J. Cell. Biochem. 2009; 107: 123
    • 3b Yu PL, Chao HL, Wang SW, Wang PS. J. Cell. Biochem. 2009; 108: 469
  • 4 Jiang X, Zhao B, Britton R, Lim LY, Leong D, Sanghera JS, Zhou B.-B, Piers E, Andersen RJ, Roberge M. Mol. Cancer Ther. 2004; 3: 1221
    • 5a Peshkov VA, Pereshivko OP, Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3790
    • 5b Bandini M, Emer E, Tommasi S, Umani-Ronchi A. Eur. J. Org. Chem. 2006; 3527
    • 5c Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
    • 6a Menon RS, Findlay AD, Bissember AC, Banwell MG. J. Org. Chem. 2009; 74: 8901
    • 6b Cervi A, Aillard P, Hazeri N, Petit L, Chai CL. L, Willis AC, Banwell MG. J. Org. Chem. 2013; 78: 9876
    • 6c Nieto-Oberhuber C, Muñoz MP, Buñuel E, Nevado C, Cárdenas DJ, Echavarren AM. Angew. Chem. Int. Ed. 2004; 43: 2402
    • 6d Ioannis CE, Lykakis N, Stratakis M. Chem. Commun. 2011; 47: 803
    • 6e England DB, Padwa A. Org. Lett. 2008; 10: 3631
    • 6f Mo J, Eom D, Lee E, Lee PH. Org. Lett. 2012; 14: 3684
    • 6g Loh CC. J, Badorrek J, Raabe G, Enders D. Chem. Eur. J. 2011; 17: 13409
    • 6h Gronnier C, Odabachian Y, Gagosz F. Chem. Commun. 2011; 47: 218
  • 7 Arcadi A, Blesi F, Cacchi S, Fabrizi G, Goggiamani A, Marinelli F. Org. Biomol. Chem. 2012; 10: 9700
    • 8a Komeyama K, Igawa R, Takaki K. Chem. Commun. 2010; 46: 1748
    • 8b Eom D, Mo J, Lee PH, Gao Z, Kim S. Eur. J. Org. Chem. 2013; 533
  • 9 Inoue H, Chatani N, Murai S. J. Org. Chem. 2002; 67: 1414
    • 10a Donets PA, Hecke KV, Meervelt LV, Van der Eycken EV. Org. Lett. 2009; 11: 3618
    • 10b Nishizawa M, Takao H, Yadav VK, Imagawa H, Sugihara T. Org. Lett. 2003; 5: 4563
  • 11 Fürstner A, Mamane V. Chem. Commun. 2003; 2112
  • 12 Chernyak N, Gevorgyan V. J. Am. Chem. Soc. 2008; 130: 5636
    • 13a Modha SG, Kumar A, Vachhani DD, Sharma SK, Parmar VS, Van der Eycken EV. Chem. Commun. 2012; 48: 10916
    • 13b Nevado C, Echavarren AM. Chem. Eur. J. 2005; 11: 3155
    • 13c Gruit M, Michalik D, Krüger K, Spannenberg A, Tillack A, Pews-Davtyan A, Beller M. Tetrahedron 2010; 66: 3341
    • 13d Gruit M, Michalik D, Tillack A, Beller M. Angew. Chem. Int. Ed. 2009; 48: 7212
    • 13e Storch J, Bernard M, Sýkora J, Karban J, Čermák J. Eur. J. Org. Chem. 2013; 260
    • 13f Pastine SJ, Youn SW, Sames D. Tetrahedron 2003; 59: 8859
    • 13g Pastine SJ, Youn SW, Sames D. Org. Lett. 2003; 5: 1055
    • 13h Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556
  • 14 Chatani N, Inoue H, Ikeda T, Murai S. J. Org. Chem. 2000; 65: 4913
  • 15 Sangu K, Fuchibe K, Akiyama T. Org. Lett. 2004; 6: 353
    • 16a Eom D, Park S, Park Y, Lee K, Hong G, Lee PH. Eur. J. Org. Chem. 2013; 2672
    • 16b Zhang Y, Hsung RP, Zhang X, Huang J, Slafer BW, Davis A. Org. Lett. 2005; 7: 1047
  • 17 Mackie ID, Johnson RP. J. Org. Chem. 2009; 74: 499
  • 18 Ramesh S, Ghosh SK, Nagarajan R. Org. Biomol. Chem. 2013; 11: 7712
    • 19a Merlic CA, You Y, McInnes DM, Zechnam AL, Miller MM, Deng Q. Tetrahedron 2001; 57: 5199
    • 19b Viji M, Nagarajan R. J. Chem. Sci. (Berlin, Ger.) 2014; 126: 1075
  • 20 Crystallographic data for compounds 4a, 4c, 4f′, and 4f have been deposited with the accession numbers CCDC 991043, 991044, 991045, and 9910436, respectively, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.