Synlett, Table of Contents Synlett 2015; 26(14): 2001-2005DOI: 10.1055/s-0034-1378720 letter © Georg Thieme Verlag Stuttgart · New YorkA Straightforward Approach towards Functionalized Amino Acids and Pipecolinic Acids via Ruthenium-Catalyzed Allylic Alkylation Phil Servatius Institut für Organische Chemie, Universitaet des Saarlandes, 66123 Saarbruecken, Germany Email: u.kazmaier@mx.uni-saarland.de , Uli Kazmaier* Institut für Organische Chemie, Universitaet des Saarlandes, 66123 Saarbruecken, Germany Email: u.kazmaier@mx.uni-saarland.de› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract Chelated amino acid ester enolates react with cis-butene diol substrates via Ru-catalyzed allylic alkylations to functionalized amino acids. The use of [(p-cymene)RuCl2]2 as catalyst allows the introduction of Z-configured allylic alcohols in the side chain of the amino acid. They facilitate access to pipecolinic acid and baikiaine derivatives. Key words Key wordsamino acids - allylic alkylation - ruthenium catalysis - cis-butene diol substrates - pipecolinic acid - baikiain Full Text References References and Notes 1 Vranova V, Lojkova L, Rejsek K, Formanek P. Chirality 2013; 25: 823 2a Sasse F, Steinmetz H, Heil J, Höfle G, Reichenbach H. J. Antibiot. 2000; 53: 879 2b Steinmetz H, Glaser N, Herdtweck E, Sasse F, Reichenbach H, Höfle G. Angew. Chem. Int. Ed. 2004; 43: 4888 ; Angew. Chem. 2004, 116, 4996 2c Ullrich A, Chai Y, Pistorius D, Elnakady YA, Herrmann J, Weissmann KJ, Kazmaier U, Müller R. Angew. Chem. Int. Ed. 2009; 48: 4422 ; Angew. Chem. 2009, 121, 4486 2d Ullrich A, Herrmann J, Müller R, Kazmaier U. Eur. J. Org. Chem. 2009; 6367 3a Tanaka H, Kuroda A, Marusawa H, Hatanaka H, Kino T, Goto T, Hashimoto M, Taga T. J. Am. Chem. Soc. 1987; 109: 5031 3b Romo D, Meyer SD, Johnson DD, Schreiber SL. J. Am. Chem. Soc. 1993; 115: 7906 4 King FE, King TJ, Warwick AJ. J. Chem. Soc. 1950; 25: 3590 5a Alegret C, Ginesta X, Riera A. Eur. J. Org. Chem. 2008; 1789 5b Ohara C, Takahashi R, Miyagawa T, Yoshimura Y, Kato A, Adachi I, Takahata H. Bioorg. Med. Chem. Lett. 2008; 1810 6 Chai Y, Pistorius D, Ullrich A, Weissman KJ, Kazmaier U, Müller R. Chem. Biol. 2010; 17: 296 Reviews: 7a Kadouri-Puchot C, Comesse S. Amino Acids 2005; 29: 101 7b Cant AA, Sutherland A. Synthesis 2012; 44: 1935 8a Chang M.-Y, Kung Y.-H, Wu T.-C. Heterocycles 2006; 68: 2365 8b Van den Broek SA. M. W, Rensen PG. W, van Delft FL, Rutjes FP. J. T. Eur. J. Org. Chem. 2010; 5906 8c Chattopadhyay SK, Roy SP, Saha T. Synthesis 2011; 2664 9a Kazmaier U, Schneider C. Synlett 1996; 975 9b Kazmaier U, Schneider C. Tetrahedron Lett. 1998; 39: 817 9c Schneider C, Kazmaier U. Synthesis 1998; 1314 9d Maier S, Kazmaier U. Eur. J. Org. Chem. 2000; 1241 10a Zumpe FL, Kazmaier U. Synthesis 1999; 1785 10b Kazmaier U, Stolz D. Angew. Chem. Int. Ed. 2006; 45: 3072 ; Angew. Chem. 2006, 118, 3143 10c Kazmaier U, Deska J, Watzke A. Angew. Chem. Int. Ed. 2006; 45: 4855 ; Angew. Chem. 2006, 118, 4973 10d Kazmaier U, Stolz D, Krämer K, Zumpe F. Chem. Eur. J. 2008; 14: 1322 10e Kazmaier U, Bayer A, Deska J. Synthesis 2013; 45: 1462 11a Hou D.-R, Hung S.-Y, Hu C.-C. Tetrahedron: Asymmetry 2005; 3858 11b Fadel A, Lahrache N. J. Org. Chem. 2007; 72: 1780 11c Wang B, Liu R.-H. Eur. J. Org. Chem. 2009; 2845 12a Kazmaier U. Amino Acids 1996; 11: 283 12b Kazmaier U. Liebigs Ann./Recl. 1997; 285 13a Kazmaier U. Curr. Org. Chem. 2003; 317 13b Kazmaier U In Frontiers in Asymmetric Synthesis and Application of alpha-Amino Acids . Soloshonok VA, Izawa K. ACS Books; Washington DC: 2009: 157 14a Kazmaier U, Zumpe FL. Angew. Chem. Int. Ed. 2000; 39: 802 ; Angew. Chem. 2000, 112, 805 14b Kazmaier U, Zumpe FL. Eur. J. Org. Chem. 2001; 4067 14c Kazmaier U, Pohlman M. Synlett 2004; 623 15a Kazmaier U, Lindner T. Angew. Chem. Int. Ed. 2005; 44: 3303 ; Angew. Chem. 2005, 117, 3368 15b Lindner T, Kazmaier U. Adv. Synth. Catal. 2005; 347: 1687 15c Krämer K, Kazmaier U. J. Org. Chem. 2006; 71: 8950 16a Kazmaier U, Stolz D. Angew. Chem. Int. Ed. 2006; 45: 3072 ; Angew. Chem. 2006, 118, 3143 16b Stolz D, Kazmaier U. Synthesis 2008; 2288 16c Hähn S, Kazmaier U. Eur. J. Org. Chem. 2011; 4931 17a Kondo T, Mitsudo T In Ruthenium in Organic Synthesis . Murahashi I. Wiley-VCH; Weinheim: 2004: 129 17b Bayer A, Kazmaier U. Org. Lett. 2010; 12: 4960 17c Bayer A, Kazmaier U. Chem. Eur. J. 2014; 20: 10484 17d Bayer A, Kazmaier U. J. Org. Chem. 2014; 79: 8491 17e Bayer A, Kazmaier U. J. Org. Chem. 2014; 79: 8498 18 Minami I, Shimizu I, Tsuji J. J. Organomet. Chem. 1985; 296: 269 19 Trost BM, Fraisse PL, Ball ZT. Angew. Chem. Int. Ed. 2002; 41: 1059 ; Angew. Chem. 2002, 114, 1101 20a Hermatschweiler R, Fernandez I, Pregosin PS, Watson EJ, Albinati A, Rizzato S, Veiros LF, Calhorda MJ. Organometallics 2005; 24: 1809 20b Hermatschweiler R, Fernandez I, Breher F, Pregosin PS, Veiros LF, Calhorda MJ. Angew. Chem. Int. Ed. 2005; 44: 4397 ; Angew. Chem. 2005, 117, 4471 20c Fernandez I, Hermatschweiler R, Breher F, Pregosin PS, Veiros LF, Calhorda MJ. Angew. Chem. Int. Ed. 2006; 45: 6386 ; Angew. Chem. 2006, 118, 6535 21a Mbaye MD, Demerseman B, Renaud J.-L, Toupet L, Bruneau C. Angew. Chem. Int. Ed. 2003; 42: 5066 21b Bruneau C, Renaud JL, Demerseman B. Chem. Eur. J. 2006; 12: 5178 21c Bruneau C, Renaud J.-L, Demerseman B. Pure Appl. Chem. 2008; 80: 861 21d Zhang H.-J, Demerseman B, Toupet L, Xi Z, Bruneau C. Adv. Synth. Catal. 2008; 350: 1601 22a Zhang S.-W, Mitsudo T, Kondo T, Watanabe Y. J. Organomet. Chem. 1993; 450: 197 22b Kondo T, Morisaki Y, Uenoyama S, Wada K, Mitsudo T. J. Am. Chem. Soc. 1999; 121: 8657 22c Kawatsura M, Ata F, Wada S, Hayase S, Uno H, Itoh T. Chem. Commun. 2007; 298 22d Kawatsura M, Ata F, Hirakawa T, Hayase S, Itoh T. Tetrahedron Lett. 2008; 49: 4873 23a Kawatsura M, Ata F, Wada S, Hayase S, Uno H, Itoh T. Chem. Commun. 2007; 12: 298 23b Kawatsura M, Sato M, Tsuji H, Ata F, Itoh T. J. Org. Chem. 2011; 76: 5485 24 General Procedure for the Ruthenium-Catalyzed Allylic Alkylations A solution of HMDS (335 mg, 2.07 mmol) in THF (2 mL) was prepared in a Schlenk flask under nitrogen. After the solution was cooled to –20 °C, a solution of n-BuLi in hexanes (1.6 M, 1.17 mL, 1.87 mmol) was added slowly. The cooling bath was removed, and stirring was continued for further 10 min. The solution was cooled to –78 °C, and the TFA-protected tert-butyl glycinate (171 mg, 0.75 mmol), dissolved in THF (2 mL), was added to the freshly prepared LHMDS solution. After 10 min a solution of dried ZnCl2 (123 mg, 0.90 mmol) in THF (2 mL) was added, and stirring was continued for 30 min at –78 °C. A solution was prepared from [(p-cymene)RuCl2]2 (6.4 mg, 0.01 mmol) and Ph3P (5.2 mg, 0.02 mmol) in THF (1 mL). The solution was stirred for 5 min before the allyl substrate (0.50 mmol) was added. The resulting solution was added slowly to the chelated enolate at –78 °C. The mixture was allowed to warm to r.t. overnight. The solution was diluted with Et2O (20 mL) before 1 M KHSO4 (10 mL) was added. After separation of the layers, the aqueous layer was extracted thrice with Et2O, and the combined organic layers were dried over Na2SO4. The solvent was evaporated in vacuo, and the crude product was purified by flash chromatography (SiO2). (Z)-6-[(tert-Butyldimethylsilyl)oxy]-2-(2,2,2-trifluoroacetamido)hex-4-enoic Acid tert-Butyl Ester (2c) 1H NMR (400 MHz, CDCl3): δ = 0.07 (s, 6 H), 0.90 (s, 9 H), 1.48 (s, 9 H), 2.68 (m, 2 H), 4.20 (m, 2 H), 4.48 (m, 1 H), 5.34 (dtt, J = 11.4, 7.8, 1.6 Hz, 1 H), 5.72 (dtt, J = 11.4, 5.6, 1.2 Hz, 1 H), 7.15 (d, J = 5.6 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = –5.3, 18.4, 25.9, 27.9, 29.5, 52.6, 59.5, 83.4, 123.1, 134.0, 169.2 ppm. Signals of the TFA group could not be observed. HRMS (CI): m/z calcd for C18H32F3NO4Si [M]+: 411.2053; found: 411.2063. (6R,Z)-6-Acetoxy-2-(2,2,2-trifluoroacetamido)hept-4-enoic Acid tert-Butyl Ester [(R)-7a] (R)-7a was obtained as a 7:3 diastereomeric mixture. Major diastereomer: 1H NMR (400 MHz, CDCl3): δ = 1.29 (d, J = 6.2 Hz, 3 H), 1.47 (s, 9 H), 2.02 (s, 3 H), 2.65 (m, 1 H), 2.88 (m, 1 H), 4.44 (m, 1 H), 5.44 (m, 3 H), 7.51 (d, J = 6.8 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 20.2, 21.1, 27.9, 29.5, 52.7, 66.7, 82.8, 127.3, 132.8, 157.4, 169.2, 171.6 ppm. Minor diastereomer (selected signals): 1H NMR (400 MHz, CDCl3): δ = 1.28 (d, J = 6.2 Hz, 3 H), 1.48 (s, 9 H), 2.01 (s, 3 H), 4.52 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 27.9, 52.5, 66.8 ppm. HRMS (CI): m/z calcd for C15H23F3NO5 [M + H]+: 354.1523; found: 354.1534. GC [l-Chirasil-Val, 80 °C, 10 min, 80 °C → 180 °C (1 °C/min), 40 min]: t R = 55.69 min (major), t R = 58.85 min (minor). 25 Mitsunobu O. Synthesis 1981; 1 26 1-(2,2,2-Trifluoroacetyl)-1,2,3,6-tetrahydropyridine-2-carboxylic Acid tert-Butyl Ester (8g) Alcohol 2g (179 mg, 0.60 mmol) was dissolved in abs. THF (13 mL) and added dropwise to a solution of Ph3P (254 mg, 0.960 mmol) and diisopropyl azodicarboxylate (196 μL, 204 mg, 0.96 mmol) in abs. THF (33 mL) at 0 °C. The reaction was allowed to warm to r.t. overnight. The solvent was evaporated, and the crude product was purified by column chromatography (silica gel; hexanes–ethyl acetate, 90:10). The desired product 8g (148 mg, 0.530 mmol, 88%) was obtained as a mixture of rotamers (ratio 55:45). Major rotamer: 1H NMR (400 MHz, CDCl3): δ = 1.43 (s, 9 H), 2.49 (m, 1 H), 2.73 (m, 1 H), 3.86 (m, 1 H), 4.19 (m, 1 H), 5.33 (dd, J = 6.6, 1.4 Hz, 1 H), 5.64 (m, 1 H), 5.83 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 25.8, 27.8, 42.1, 51.3, 82.6, 122.2, 123.4, 168.3 ppm. Minor rotamer (selected signals): 1H NMR (400 MHz, CDCl3): δ = 4.35 (m, 1 H), 4.70 (d, J = 6.0 Hz, 1 H), 5.73 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 26.8, 27.8, 42.5, 54.3, 82.9, 121.9, 122.9, 168.4 ppm. Signals of the TFA group could not be observed. HRMS (CI): m/z calcd for C12H17F3NO3 [M + H]+: 280.1155; found: 280.1159. Anal. Calcd (%) for C12H16F3NO3 (279.26): C, 51.61; H, 5.78; N, 5.02. Found: C, 51.76; H, 5.67; N, 4.98. Supplementary Material Supplementary Material Supporting Information