Synlett 2015; 26(11): 1628-1632
DOI: 10.1055/s-0034-1378702
letter
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Trifluoromethylthiolation of Alkyl Electrophiles via a Cascade of Thiocyanation and Nucleophilic Cyanide–CF3 Substitution

Christian Matheis
Department of Organic Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany   Email: goossen@chemie.uni-kl.de
,
Minyan Wang
Department of Organic Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany   Email: goossen@chemie.uni-kl.de
,
Thilo Krause
Department of Organic Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany   Email: goossen@chemie.uni-kl.de
,
Lukas J. Goossen*
Department of Organic Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany   Email: goossen@chemie.uni-kl.de
› Author Affiliations
Further Information

Publication History

Received: 10 March 2015

Accepted: 15 April 2015

Publication Date:
30 April 2015 (online)


Abstract

A straightforward synthesis of alkyl trifluoromethyl thioethers was developed that starts from widely available alkyl halides or mesylates and the inexpensive reagents sodium thiocyanate and trimethyl(trifluoromethyl)silane. The alkyl electrophiles are converted in situ into the corresponding thiocyanates, which react with the nucleophilic Ruppert–Prakash reagent to give the corresponding trifluoromethyl thioethers via a Langlois-type CN–CF3 substitution. This process enables the efficient introduction of the pharmaceutically meaningful trifluoromethylthio groups into functionalized molecules without the need of metal catalysts or expensive preformed trifluoromethylthiolating agents.

Supporting Information

 
  • References and Notes

    • 1a Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 1b Jeschke P. ChemBioChem 2004; 5: 570
    • 1c Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 1d Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1e Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 1f Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2a Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 2b Furuya T, Kamlet AS, Ritter T. Nature (London, U.K.) 2011; 473: 470
    • 2c Wu X.-F, Neumann H, Beller M. Chem. Asian J. 2012; 7: 1744
    • 2d Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 2e Liu T, Shen Q. Eur. J. Org. Chem. 2012; 6679
    • 2f Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 2g Lantaño B, Torviso MR, Bonesi SM, Barata-Vallejo S, Postigo A. Coord. Chem. Rev. 2015; 285: 76
    • 2h Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 3a Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 2415
    • 3b Boiko VN. Beilstein J. Org. Chem. 2010; 6: 880
    • 3c Manteau B, Pazenok S, Vors J.-P, Leroux FR. J. Fluor. Chem. 2010; 131: 140
    • 3d Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
    • 3e Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
  • 4 Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ. J. Med. Chem. 1973; 16: 1207
    • 5a Counts GW, Gregory D, Zeleznik D, Turck M. Antimicrob. Agents Chemother. 1977; 11: 708
    • 5b Aswapokee N, Neu HC. Antimicrob. Agents Chemother. 1979; 15: 444
    • 5c Coombs GH, Mottram JC. Antimicrob. Agents Chemother. 2001; 45: 1743
    • 5d Sato D, Kobayashi S, Yasui H, Shibata N, Toru T, Yamamoto M, Tokoro G, Ali V, Soga T, Takeuchi T, Suematsu M, Nozaki T. Int. J. Antimicrob. Agents 2010; 35: 56
    • 6a Nodiff EA, Lipschutz S, Craig PN, Gordon M. J. Org. Chem. 1960; 25: 60
    • 6b Feiring AE. J. Org. Chem. 1979; 44: 2907
    • 7a Wakselman C, Tordeux M. J. Org. Chem. 1985; 50: 4047
    • 7b Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
    • 7c Harsányi A, Dorkó É, Csapó Á, Bakó T, Peltz C, Rábai J. J. Fluorine Chem. 2011; 132: 1241
    • 7d Billard T, Langlois BR. Tetrahedron Lett. 1996; 37: 6865
    • 7e Billard T, Large S, Langlois BR. Tetrahedron Lett. 1997; 38: 65
    • 7f Wakselman C, Tordeux M, Clavel J.-L, Langlois B. J. Chem. Soc., Chem. Commun. 1991; 993
    • 7g Quiclet-Sire B, Saicic RN, Zard SZ. Tetrahedron Lett. 1996; 37: 9057
    • 7h Roques N. J. Fluorine Chem. 2001; 107: 311
    • 7i Blond G, Billard T, Langlois BR. Tetrahedron Lett. 2001; 42: 2473
    • 7j Pooput C, Medebielle M, Dolbier WR. Org. Lett. 2004; 6: 301
    • 7k Pooput C, Dolbier William R, Médebielle M. J. Org. Chem. 2006; 71: 3564
    • 7l Potash S, Rozen S. J. Fluorine Chem. 2014; 168: 173
    • 8a Baert F, Colomb J, Billard T. Angew. Chem. Int. Ed. 2012; 51: 10382
    • 8b Shao X, Wang X, Yang T, Lu L, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 3457
    • 8c Pluta R, Nikolaienko P, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 1650
    • 8d Xu C, Ma B, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 9316
    • 8e Yang Y.-D, Azuma A, Tokunaga E, Yamasaki M, Shiro M, Shibata N. J. Am. Chem. Soc. 2013; 135: 8782
    • 9a Teverovskiy G, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 7312
    • 9b Zhang C.-P, Vicic DA. J. Am. Chem. Soc. 2012; 134: 183
    • 9c Weng Z, He W, Chen C, Lee R, Tan D, Lai Z, Kong D, Yuan Y, Huang K.-W. Angew. Chem. Int. Ed. 2013; 52: 1548
  • 10 Tran LD, Popov I, Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
    • 11a Chen C, Xie Y, Chu L, Wang R.-W, Zhang X, Qing F.-L. Angew. Chem. Int. Ed. 2012; 51: 2492
    • 11b Chen C, Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 12454
    • 11c Zhang C.-P, Vicic DA. Chem. Asian J. 2012; 7: 1756
    • 11d Zhu S.-Q, Xu X.-H, Qing F.-L. Eur. J. Org. Chem. 2014; 4453
    • 12a Man EH, Coffman DD, Muetterties EL. J. Am. Chem. Soc. 1959; 81: 3575
    • 12b Harris JF. J. Org. Chem. 1966; 31: 931
    • 12c Kolomeitsev AA, Chabanenko KY, Röschenthaler G.-V, Yagupolskii YL. Synthesis 1994; 145
    • 12d Ferry A, Billard T, Langlois BR, Bacqué E. Angew. Chem. Int. Ed. 2009; 48: 8551
    • 13a Wang X, Zhou Y, Ji G, Wu G, Li M, Zhang Y, Wang J. Eur. J. Org. Chem. 2014; 3093
    • 13b Hu M, Rong J, Miao W, Ni C, Han Y, Hu J. Org. Lett. 2014; 16: 2030
    • 13c Lefebvre Q, Fava E, Nikolaienko P, Rueping M. Chem. Commun. 2014; 50: 6617
    • 14a Liu J.-B, Xu X.-H, Chen Z.-H, Qing F.-L. Angew. Chem. Int. Ed. 2015; 54: 897
    • 14b Nikolaienko P, Pluta R, Rueping M. Chem. Eur. J. 2014; 20: 9867
    • 15a Munavalli S, Rossman DI, Rohrbaugh DK, Ferguson CP, Durst HD. J. Fluorine Chem. 1996; 76: 7
    • 15b Zhang K, Liu J.-B, Qing F.-L. Chem. Commun. 2014; 50: 14157
    • 15c Kong D, Jiang Z, Xin S, Bai Z, Yuan Y, Weng Z. Tetrahedron 2013; 69: 6046
    • 15d Zhong W, Liu X. Tetrahedron Lett. 2014; 55: 4909
    • 15e Lin Q, Chen L, Huang Y, Rong M, Yuan Y, Weng Z. Org. Biomol. Chem. 2014; 12: 5500
  • 16 Hu F, Shao X, Zhu D, Lu L, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 6105
    • 17a Wu H, Xiao Z, Wu J, Guo Y, Xiao J.-C, Liu C, Chen Q.-Y. Angew. Chem. Int. Ed. 2015; 54: 4070
    • 17b Chen C, Xu X.-H, Yang B, Qing F.-L. Org. Lett. 2014; 16: 3372
    • 17c Bootwicha T, Liu X, Pluta R, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2013; 52: 12856
    • 17d Guo S, Zhang X, Tang P. Angew. Chem. Int. Ed. 2015; 54: 4065
  • 18 Tyrra W, Naumann D, Hoge B, Yagupolskii YL. J. Fluorine Chem. 2003; 119: 101
    • 19a Matheis C, Jouvin K, Goossen LJ. Org. Lett. 2014; 16: 5984
    • 19b Danoun G, Bayarmagnai B, Grünberg MF, Gooßen LJ. Angew. Chem. Int. Ed. 2013; 52: 7972
    • 19c Bayarmagnai B, Matheis C, Risto E, Goossen LJ. Adv. Synth. Catal. 2014; 356: 2343
    • 20a Danoun G, Bayarmagnai B, Gruenberg MF, Goossen LJ. Chem. Sci. 2014; 5: 1312
    • 20b Bayarmagnai B, Matheis C, Jouvin K, Goossen LJ. Angew. Chem. Int. Ed. 2015; 54 in press; doi: 10.1002/anie.201500899
  • 21 Ishizaki M, Hoshino O. Tetrahedron 2000; 56: 8813
  • 22 General Procedure for the Trifluoromethylthiolation of Alkyl Thiocyanates Generated in situ An oven-dried 20 mL crimp-cap vessel with Teflon-coated stirrer bar was charged with Cs2CO3 (652 mg, 1.00 mmol) and NaSCN (100 mg, 1.20 mmol). MeCN (2 mL), TMSCF3 (537 mg, 0.60 mL, 1.20 mmol), and the alkyl halide or mesylate (1.00 mmol) were added via syringe. The suspension was heated to the following temperatures, depending on the leaving group: primary alkyl bromides and iodides 60 °C; secondary alkyl bromides and primary chlorides 90 °C, and alkyl mesylates 110 °C. Stirring was continued until completion of the reaction was determined by GC and GC–MS. The resulting mixture was allowed to cool to r.t., diluted with Et2O (20 mL), washed with H2O (2 × 10 mL) and brine (10 mL). The organic layer was dried over MgSO4, filtered, and concentrated under reduced pressure (700 mbar, 40 °C). Most compounds were obtained in pure form, for products with aromatic substituents the residue was purified by column chromatography (SiOH, Et2O–pentane gradient). [(Trifluoromethyl)thio]methylbenzene [CAS No.: 351-60-0] (2) 1H NMR (400 MHz, CDCl3): δ = 7.38–7.36 (m, 5 H), 4.15 (s, 2 H) ppm. 19F NMR (375 MHz, CDCl3): δ = –41.47 ppm. 13C NMR (101 MHz, CDCl3): δ = 135.0, 130.6 [q, 1 J(C,F) = 307.0 Hz], 128.9 (2 C), 128.8 (2 C), 128.0, 34.2 [q, 3 J(C,F) = 2.7 Hz] ppm. IR (neat): ν = 2922, 2853, 1463, 1378 cm–1. MS (ion trap, EI, 70 eV): m/z (%) = 192 (23) [M + ], 91 (100), 69 (13). HRMS (EI-TOF): m/z calcd for C8H7F3S: 192.0221; found: 192.0224. 11-[(Trifluoromethyl)thio]undecanoic Acid (14) 1H NMR (400 MHz, CDCl3): δ = 2.88 (t, 3 J = 7.5 Hz, 2 H), 2.35 (t, 3 J = 7.5 Hz, 2 H), 1.72–1.60 (m, 4 H), 1.44–1.29 ppm (m, 12 H) ppm. 19F NMR (375 MHz, CDCl3): δ = –41.3 ppm. 13C NMR (101 MHz, CDCl3): δ = 180.5, 131.2 [q, 1 J(C,F) = 305.2 Hz], 34.1, 29.83 [q, 3 J(C,F) = 2.4 Hz], 29.34, 29.27, 29.25, 29.1, 29.0, 28.9, 28.5, 24.6 ppm. IR (neat): ν = 2927, 2856, 1709, 1464, 1414, 1113, 938, 756 cm–1. MS (ion trap, EI, 70 eV): m/z (%) = 287 (12) [M+ + H], 199 (73), 129 (44), 117 (91), 101 (9), 69 (24). HRMS (EI-TOF): m/z calcd for: C12H21F3O2S: 286.1214; found: 286.1230. 3-[(Trifluoromethyl)thio]propyltrimethoxysilane (16) 1H NMR (400 MHz, CDCl3): δ = 3.55 (s, 9 H), 2.88 (t, 3 J = 7.3 Hz, 2 H), 1.79 (qi, 3 J = 7.8 Hz, 2 H), 0.73 (t, 3 J = 8.3 Hz, 2 H) ppm. 19F NMR (375 MHz, CDCl3): δ = –41.2 ppm. 13C NMR (101 MHz, CDCl3): δ = 131.2 [q, 1 J(C,F) = 305.9 Hz], 50.5 (3 H), 32.5 [q, 3 J(C,F) = 1.5 Hz], 23.2, 8.3 ppm. IR (neat): ν = 2945, 2843, 1759, 1077, 809, 754 cm–1. MS (ion trap, EI, 70 eV): m/z (%) = 264 (1) [M+], 233 (12), 195 (63), 121 (13), 93 (100). HRMS (EI-TOF): m/z calcd for C7H15O3SiF3S: 264.0463; found: 264.0468. N-{2-[(Trifluoromethyl)thio]ethyl}-N,N-dibutylamine (17) 1H NMR (400 MHz, CDCl3): δ = 3.30 (t, 3 J = 7.1 Hz, 2 H), 2.74 (t, 3 J = 7.0 Hz, 2 H), 2.42 (t, 3 J = 7.2 Hz, 4 H), 1.43–1.37 (m, 4 H), 1.34–1.28 (m, 4 H), 0.92 (t, 3 J = 7.3 Hz, 6 H) ppm. 19F NMR (375 MHz, CDCl3): δ = –41.4 ppm. 13C NMR (101 MHz, CDCl3): δ = 131.6 [q, 1 J(C,F) = 306.8 Hz], 53.6 (2 C), 52.8, 29.3 (2 C), 28.8, 20.5 (2 C), 14.0 (2 C) ppm. IR (neat): ν = 2959, 2934, 2874, 1739, 1460, 1366, 1217, 1119, 748 cm–1. MS (ion trap, EI, 70 eV): m/z (%) = 257 (3), 214 (44), 172 (66), 142 (100), 58 (41). HRMS (EI-TOF): m/z calcd for C11H22NF3S: 257.1425; found: 257.1420. 1-Trimethylsilyl-5-(trifluoromethyl)thiopent-1-yne (19) 1H NMR (400 MHz, CDCl3): δ = 3.01 (t, 3 J = 7.1 Hz, 2 H), 2.38 (t, 3 J = 6.8 Hz, 2 H), 1.90 (qi, 3 J = 7.0 Hz, 2 H), 0.15 (s, 9 H) ppm. 19F NMR (375 MHz, CDCl3): δ = –41.1 ppm. 13C NMR (101 MHz, CDCl3): δ = 131.0 [q, 1 J(C,F) = 306.1 Hz], 104.8, 86.2, 28.7 [q, 3 J(C,F) = 1.8 Hz], 28.3, 18.6, 0.0 (3 C) ppm. IR (neat): ν = 2960, 2176, 1685, 1432, 1250, 1107, 838, 758, 699 cm–1. MS (ion trap, EI, 70 eV): m/z (%) = 240 (11) [M+], 171 (97), 129 (100). HRMS (EI-TOF): m/z calcd for C9H15SiF3S: 240.0616; found: 240.0614. (1R,5S)-[(Trifluoromethyl)thio]-2-{6,6-dimethylbicyclo[3.1.1]-hept-2-en-2-yl}ethylene (21) 1H NMR (400 MHz, CDCl3): δ = 5.31 (m, 1 H), 2.93–2.89 (m, 2 H), 2.41–2.38 (m, 1 H), 2.37–2.32 (m, 2 H), 2.26–2.23 (m, 2 H), 2.11–2.09 (m, 1 H), 2.02–1.99 (m, 1 H), 1.29 (s, 3 H), 1.16 (d, 3 J = 8.5 Hz, 1 H), 0.84 (s, 3 H) ppm. 19F NMR (375 MHz, CDCl3): δ = –41.2 ppm. 13C NMR (101 MHz, CDCl3): δ = 145.2, 132.2 [q, 1 J(C,F) = 306.1 Hz], 118.8, 40.6, 38.0, 36.6, 31.6, 31.2, 27.8 [q, 3 J(C,F) = 1.8 Hz], 26.2, 21.1 ppm. IR (neat): ν = 2917, 1434, 1366, 1104, 887, 794, 756 cm–1. MS (ion trap, EI, 70 eV): m/z (%) = 250 (14) [M+], 105 (100), 121 (10). HRMS (EI-TOF): m/z calcd for C12H17F3S: 250.1003; found: 250.0987; [α]D 20 –25.9 (c 1.00, Et2O).