Synlett 2014; 25(15): 2213-2216
DOI: 10.1055/s-0034-1378538
letter
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthesis of (1S,2R)-1-Amino-2-methylcyclopropanephosphonic Acid: A Phosphonic Analogue of (–)-Norcoronamic Acid – Influence of Stereochemistry on Regioselectivity in Sulfoxide–Metal Exchange

Wanda H. Midura*
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Heteroorganic Chemistry, 90-363 Lodz Sienkiewicza 112, Poland   Fax: +48(42)6847126   Email: whmidura@bilbo.cbmm.lodz.pl
,
Aneta Rzewnicka
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Heteroorganic Chemistry, 90-363 Lodz Sienkiewicza 112, Poland   Fax: +48(42)6847126   Email: whmidura@bilbo.cbmm.lodz.pl
› Author Affiliations
Further Information

Publication History

Received: 27 April 2014

Accepted after revision: 25 June 2014

Publication Date:
06 August 2014 (online)


Abstract

Asymmetric synthesis of (–)-(1S,2R)-1-amino-2-methylcyclopropanephosphonic acid, a phosphonic analogue of (–)-norcoronamic acid was developed. The presence of the nitrile group as a precursor of the amino moiety, by changing stereoselectivity in the alkylation step, in consequence allowed to avoid 1,2-migration of a phosphoryl group on the cyclopropane ring and to obtain the required cyclopropylphosphonate of the retained structure and configuration.

Supporting Information

 
  • References and Notes


    • For a recent review, see:
    • 1a Mucha A, Kafarski P, Berlicki Ł. J. Med. Chem. 2011; 54: 5955
    • 1b Orsini F, Sello G, Sisti M. Curr. Med. Chem. 2010; 17: 264
    • 1c Ordonez M, Rojas-Cabrera H, Cativiela C. Tetrahedron 2009; 65: 17
    • 1d Berlicki Ł, Kafarski P. Curr. Org. Chem. 2005; 9: 1829
    • 1e Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity. Kukhar V, Hudson H. John Wiley and Sons; New York: 2000
    • 2a Stammer CH. Tetrahedron 1990; 46: 2231
    • 2b Alami A, Calmes M, Daunis J, Jacquier R. Bull. Soc. Chim. Fr. 1993; 130: 5
    • 2c Burgess K, Kwok-Kan H, Destradi MS. Synlett 1994; 575
  • 3 Brackmann F, de Meijere A. Chem. Rev. 2007; 107: 4493
    • 4a Midura WH, Mikołajczyk M. Tetrahedron Lett. 2002; 43: 3061
    • 4b Krysiak J, Midura WH, Wieczorek W, Sieroń L, Mikołajczyk M. Tetrahedron: Asymmetry 2010; 21: 1486
    • 4c Midura WH, Krysiak JA, Rzewnicka A, Supeł A, Łyżwa P. Tetrahedron 2013; 69: 730
    • 5a Midura WH. Synlett 2006; 733 ; and references cited therein
    • 5b Midura WH. Tetrahedron Lett. 2007; 48: 3907
    • 5c Midura WH, Cypryk M. Tetrahedron: Asymmetry 2010; 21: 177
  • 6 Midura WH, Rzewnicka A. Tetrahedron: Asymmetry 2013; 24: 937
  • 7 Hercouet A, Le Corre M, Carboni B. Tetrahedron Lett. 2000; 41: 197
    • 8a Fadel A, Tesson N. Eur. J. Org. Chem. 2000; 2153
    • 8b Fadel A, Tesson N. Tetrahedron: Asymmetry 2000; 11: 2023
  • 9 Yamazaki S, Takada T, Imanishi T, Moriguchi Y, Yamabe S. J. Org. Chem. 1998; 63: 5919
  • 10 Midura WH, Sobczak A, Paluch P. Tetrahedron Lett. 2013; 54: 223
  • 11 Compound cis-7: 31P NMR (81 MHz, CDCl3): δ = 14.0. 1H NMR (500 MHz, CDCl3): δ = 1.46 [t, J HH = 7.0 Hz, 3 H, (CH 3CH2O)P], 1.48 [t, J HH = 7.0 Hz, 3 H, (CH 3CH2O)P], 1.49 (s, 3 H, CH3), 1.66 (dd, J HH = 6.1 Hz, J PH= 7.7 Hz, 1 H, CH cis ), 2.25 (dd, J HH = 6.1 Hz, J PH = 16.1 Hz, 1 H), 2.43 (s, 3 H, C6H4CH 3), 4.29–4.40 (m, 2 H, POCH 2CH3), 4.41–4.44 (m, 2 H, POCH 2CH3), 7.32 and 7.51 (A2B2, 4 H, C6 H 4CH3). 13C NMR (125 MHz, CDCl3): δ = 11.9 (CH3), 16.3 [m, (CH3CH2O)P], 20.0 [d, J CP = 190.4 Hz, CP(O)], 21.4 (C6H4 CH3), 24.1, 50.0 (CHSO), 64.2 [d, J CP = 6.2 Hz, (CH3 CH2O)P], 64.9 [d, J CP = 6.5 Hz, (CH3 CH2O)P], 116.5 (CN), 124.5, 129.9, 138.0, 142.2. HRMS (CI): m/z calcd for C16H24NPO4 [M + H]+: 356.10833; found: 356.108465.Compound trans-7: 31P NMR (81 MHz, CDCl3): δ = 13.8. 1H NMR (600 MHz, CDCl3): δ = 1.17 [t, J HH = 7.1 Hz, 3 H, (CH 3CH2O)P], 1.24 (s, 3 H, CH3), 1.27 [t, J HH = 7.1 Hz, 3 H, (CH 3CH2O)P], 2.06 (dd, J HH = 5.8 Hz, J PH = 14.0 Hz, 1 H, CH cis ), 2.40 [dd, J HH = 5.8 Hz, J PH = 8.9 Hz, 1 H, CHS(O)], 2.43 (s, 3 H, C6H4CH 3), 3.96–3.99 (m, 1 H, POCHHCH3), 4.01–4.05 (m, 1 H, POCHHCH3), 4.23–4.27 (m, 2 H, POCH 2CH3), 7.36 and 7.73 (A2B2, 4 H, C6 H 4CH3). 13C NMR (125 MHz, CDCl3): δ = 9.1, 16.1 [m, (CH3CH2O)P], 21.5 (C6H4 CH3), 25.6, 47.8 (CHSO), 63.7 (d, J CP = 6.5 Hz, [CH3 CH2O)P], 64.4 [d, J CP = 6.2 Hz, (CH3 CH2O)P], 116.6 (CN), 124.9, 129.8, 136.9, 142.4. HRMS (CI): m/z calcd for C16H24NPO4 [M + H]+: 356.10833; found: 356.108545.
    • 12a Boche G. Angew. Chem., Int. Ed. Engl. 1989; 28: 277
    • 12b Chassaing G, Lett R, Marquet A. Tetrahedron Lett. 1978; 19: 471
    • 12c Durst T, Molin M. Tetrahedron Lett. 1975; 16: 63
    • 12d Nishihata K, Nishio M. Tetrahedron Lett. 1976; 17: 1695
  • 13 Compound 8: 31P NMR (81 MHz, CDCl3): δ = 18.0. 1H NMR (600 MHz, CDCl3): δ = 1.40 [t, J HH = 7.0 Hz, 3 H, (CH 3CH2O)P], 1.42 [t, J HH = 7.0 Hz, 3 H, (CH 3CH2O)P], 1.44 (d, J HH = 6.7 Hz, 3 H, CH3), 1.55 (ddd, J HH = 4.8 Hz, J HH = 7.1 Hz, J PH = 14.2 Hz, 1 H, CH cis ), 1.70 (ddd, J HH = 4.8 Hz, J HH = 8.9 Hz, J PH = 7.3 Hz, 1 H, CH trans ), 1.90 (m, 1 H, CHCH3), 4.24 (m, 1 H, POCH 2CH3). 13C NMR (125 MHz, CDCl3): δ = 8.6 (d, J CP = 198.8 Hz, C1), 13.0 (d, J CP = 3.4 Hz, CH3) 16.3 [d, J CP = 6.0 Hz, (CH3CH2O)P], 16.4 [(CH3CH2O)P], 21.9, 24.4, 63.3 [d, J CP = 6.5 Hz, (CH3 CH2O)P], 63.6 [d, J CP = 6.0 Hz, (CH3 CH2O)P], 119.9 (CN). HRMS (CI): m/z calcd for C9H17NPO3 [M + H]+: 218.09497; found: 218.094607.
  • 14 Groth U, Lehmann L, Richter L, Schöllkopf U. Liebigs Ann. Chem. 1993; 427
  • 15 Koppe F, Sklute G, Polborn K, Marek I, Knochel P. Org. Lett. 2005; 7: 3789
  • 16 Compound 9: 31P NMR (81 MHz, CDCl3): δ = 26.1. 1H NMR (500 MHz, CDCl3): δ = 1.11 (ddd, J HH = 5.0 Hz, J HH = 5.5 Hz, J PH = 13.5 Hz, 1 H, CHH), 1.39 [t, J HH = 7.0 Hz, 3 H, (CH3 CH2O)P], 1.40 [t, J HH = 7.0 Hz, 3 H, (CH3 CH2O)P], 1.47 (d, J PH = 13.0 Hz, 3 H, CH3CP), 1.62 (ddd, J HH = 5.0 Hz, J HH = 9.0 Hz, J PH = 14.0 Hz, 1 H, CHH), 2.04 (ddd, J HH = 5.5 Hz, J HH = 9.0 Hz, J PH = 14.3 Hz, 1 H, CHCN), 4.13 (m, 4 H, POCH2). 13C NMR (125 MHz, CDCl3): δ = 15.9 (CH2C), 16.4 [d, J CP = 5.7 Hz, (CH3 CH2O)P], 17.1 (d, J CP = 194.0 Hz, CP), 18.2, 29.7 (d, J CP = 2.9 Hz, CCN), 62.8 (d, J CP = 6.2 Hz, POCH2), 127.1 (CN). HRMS–FAB: m/z calcd for C9H16NPO3[M]+: 9217.0872; found: 217.086782.
  • 17 Other factors which have an influence on the behavior of carbanion formed after sulfinyl exchange are under our current investigations.
  • 19 Wąsek K, Kędzia J, Krawczyk H. Tetrahedron: Asymmetry 2010; 21: 2081