Synlett 2014; 25(12): 1709-1712
DOI: 10.1055/s-0034-1378229
letter
© Georg Thieme Verlag Stuttgart · New York

Aza-Reformatsky Reaction Promoted by Catalytic Samarium Diiodide: Synthesis of β-Amino Esters or Amides

Humberto Rodríguez-Solla*
Dpto. Química Orgánica e Inorgánica, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain   Email: hrsolla@uniovi.es
,
Ainhoa Díaz-Pardo
Dpto. Química Orgánica e Inorgánica, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain   Email: hrsolla@uniovi.es
,
Carmen Concellón
Dpto. Química Orgánica e Inorgánica, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain   Email: hrsolla@uniovi.es
,
Vicente del Amo
Dpto. Química Orgánica e Inorgánica, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain   Email: hrsolla@uniovi.es
› Author Affiliations
Further Information

Publication History

Received: 31 March 2014

Accepted after revision: 05 May 2014

Publication Date:
24 June 2014 (online)


Abstract

The synthesis of β-amino esters or amides has been achieved from moderate to high yields from the reaction of imines and α-halo esters or amides promoted by catalytic amounts of ­samarium diiodide in the presence of magnesium turnings as co-­reductant. A mechanism is proposed to explain this catalytic samarium(II)-promoted aza-Reformatsky reaction.

 
  • References and Notes


    • For reviews on the synthesis of β-amino acids, see:
    • 1a Cole DC. Tetrahedron 1994; 50: 9517
    • 1b Enantioselective Synthesis of β-Amino Acids. Juaristi E. Wiley-VCH; New York: 1997
    • 1c Juaristi E, López-Ruiz H. Curr. Med. Chem. 1999; 6: 983
    • 1d Abele S, Seebach D. Eur. J. Org. Chem. 2000; 1
    • 1e Lui M, Sibi M. Tetrahedron 2002; 58: 7991
    • 1f Davies SG, Smith AD, Price PD. Tetrahedron: Asymmetry 2005; 16: 2833
    • 1g Sleebs BE, Van Nguyen TT, Hughes AB. Org. Prep. Proced. Int. 2009; 41: 429

    • For recent papers on the synthesis of β-amino acids, see:
    • 1h Shen B, Johnston JN. Org. Lett. 2008; 10: 4397
    • 1i Yang JW, Chandler C, Stadler M, Kampen D, List B. Nature (London, U.K.) 2008; 452: 453
    • 1j Seayad J, Patra PK, Zhang Y, Ying JY. Org. Lett. 2008; 10: 953
    • 1k Lu X, Deng L. Angew. Chem. Int. Ed. 2008; 47: 7710
    • 1l Martin NJ. A, Cheng X, List B. J. Am. Chem. Soc. 2008; 130: 13862
    • 1m Malkov AV, Stončius S, Vranková K, Arndt M, Kočovský P. Chem. Eur. J. 2008; 14: 8082
    • 1n Nolte GT, Baxter VuJ. M, Leighton JL. Org. Lett. 2011; 13: 816
    • 1o Bea S.-H, Park H.-J, Lee S.-H, Yun H. Chem. Commun. 2011; 47: 5894
    • 1p Wang Q, Leutzsch M, van Gemmeren M, List B. J. Am. Chem. Soc. 2013; 135: 15334
  • 2 Sewald N. Angew. Chem. Int. Ed. 2003; 42: 5794

    • β-Amino acids can be transformed into other compounds. Piperidines:
    • 3a Jefford CW, Wang JB. Tetrahedron Lett. 1993; 34: 2911
    • 3b Davis FA, Santhanaraman M. J. Org. Chem. 2006; 71: 4222
    • 3c Davies SG, Hughes DG, Price PD, Roberts PM, Russell AJ, Smith AD, Thomson JE, Williams OM. H. Synlett 2010; 567

    • Indolizidines:
    • 3d Jefford CW, Wang JB. Tetrahedron Lett. 1993; 34: 3119
    • 3e Davis FA, Yang B. Org. Lett. 2003; 5: 5011
    • 3f Davis FA, Yang B. J. Am. Chem. Soc. 2005; 127: 8398

    • β-Lactams:
    • 3g Juaristi E, Quintana D, Escalante J. Aldrichimica Acta 1994; 27: 3
    • 3h Tzouvelekis LS, Bonomo RA. Curr. Pharm. Des. 1999; 5: 847
    • 3i Massova I, Mobashery S. Curr. Pharm. Des. 1999; 5: 929
    • 3j Mascaretti OA, Danelon GO, Laborde M, Mata EG, Setti EL. Curr. Pharm. Des. 1999; 5: 939
    • 3k Garau G, García-Sáez I, Bebrone C, Anne C, Mercuri P, Galleen M, Frere JM, Dideberg O. Antimicrob. Agents Chemother. 2004; 48: 2347
    • 3l Ozeki M, Ochi S, Hayama N, Hosoi S, Kajimoto T, Node M. J. Org. Chem. 2010; 75: 4201
    • 4a Drey CN. C In Chemistry and Biochemistry of the Amino Acids . Barret GC. Chapman and May; New York: 1985. Chap. 3
    • 4b Griffith OW. Annu. Rev. Biochem. 1986; 55: 855
    • 5a Tramontini M, Angiolini L In Mannich-Bases: Chemistry and Uses . CRC; Boca Raton, FL: 1994
    • 5b Cardillo G, Tomasini C. Chem. Soc. Rev. 1996; 117
    • 5c Enantioselective Synthesis of β-Amino Acids . Juaristi E, Soloshonok VA. Wiley-VCH; New York: 2005

      For reviews on β-peptides, see:
    • 6a Gellman SH. Acc. Chem. Res. 1998; 31: 173
    • 6b Seebach D, Abele S, Gademann K, Jaun B. Angew. Chem. Int. Ed. 1999; 38: 1595
  • 7 Krauthäuser S, Christianson LA, Powell DR, Gellman SH. J. Am. Chem. Soc. 1997; 119: 11719
    • 8a Concellón JM, Rodríguez-Solla H, Simal C. Adv. Synth. Catal. 2009; 351: 1238
    • 8b Concellón JM, Rodríguez-Solla H, Simal C, del Amo V, García-Granda S, Díaz MR. Adv. Synth. Catal. 2009; 351: 2991

      For recent reviews of SmI2, see:
    • 9a Edmons DJ, Johnston D, Procter DJ. Chem. Rev. 2004; 104: 3371
    • 9b Concellón JM, Rodríguez-Solla H. Chem. Soc. Rev. 2004; 33: 599
    • 9c Jung D, Kim YH. Synlett 2005; 3019
    • 9d Concellón JM, Rodríguez-Solla H. Eur. J. Org. Chem. 2006; 1613
    • 9e Kagan HB, Gopalaiah K. New J. Chem. 2008; 32: 607
    • 9f Rudkin IM, Miller LC, Procter DJ. Organomet. Chem. 2008; 34: 19
    • 9g Nicolau KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
    • 9h Concellón JM, Rodríguez-Solla H, Concellón C, del Amo V. Chem. Soc. Rev. 2010; 39: 4103
    • 9i Procter DJ, Flowers RA. II, Skrydstrup T. Organic Synthesis Using Samarium Diiodide: A Practical Guide . Royal Society of Chemistry Publishing; Cambridge: 2010
    • 9j Szostak M, Spain M, Parmar D, Procter DJ. Chem. Commun. 2012; 330
    • 9k Harb HY, Procter DJ. Synlett 2012; 23: 6
    • 9l Szostak M, Spain M, Procter DJ. Chem. Soc. Rev. 2013; 42: 9155
  • 10 Corey EJ, Zheng GZ. Tetrahedron 1997; 12: 2045
    • 11a Hélion F, Namy J.-L. J. Org. Chem. 1997; 64: 2944
    • 11b Lannon M.-I, Hélion F, Namy J.-L. Tetrahedron 2003; 59: 10551
  • 12 Orsini F, Lucci EM. Tetrahedron Lett. 2005; 46: 1909
  • 13 Nomura R, Matsuno T, Endo T. J. Am. Chem. Soc. 1996; 118: 11666
  • 14 Aspinall HC, Greeves N, Valla C. Org. Lett. 2005; 10: 1919
  • 15 Hébri H, Dunach E, Heintz M, Troupel M, Périchon J. Synlett 1991; 901
  • 16 Sun L, Sahloul K, Mellah M. ACS Catal. 2013; 3: 2568
  • 17 Concellón JM, Rodríguez-Solla H, Concellón C, Díaz-Pardo A, Llavona R. Synlett 2011; 262
  • 18 Wang Y, Song J, Hong R, Li H, Deng L. J. Am. Chem. Soc. 2006; 128: 8156
  • 19 Procedure for the Synthesis of N-Tosyloctan-1-imine (1a) A mixture of n-octanal (10 mmol), p-toluenesulfonamide (10 mmol), sodium p-toluenesulfinate (10 mmol) in H2O (15 mL), and formic acid (15 mL) was stirred for 24 h at r.t. The resulting white precipitate was collected by filtration, washed with H2O (3 × 10 mL) and hexane (2 × 10 mL), then dissolved in CH2Cl2 (100 mL), followed by addition of H2O (35 mL) and sat. aq NaHCO3 (35 mL). The solution was well stirred for 10 min at r.t. The organic phase was collected, the aqueous phase was extracted with CH2Cl2 (3 × 70 mL). The combined organic layers were dried over Na2SO4 and concentrated in vacuo to yield N-tosyloctan-1-imine (1a) as a colorless oil (1.84 g, 65%). This material was used without further purification. 1H NMR (300 MHz, CDCl3): δ = 8.60 (t, J = 4.6 Hz, 1 H), 7.81 (d, J = 8.2 Hz, 2 H), 7.34 (d, J = 8.2 Hz, 2 H), 2.51 (dt, J = 7.4, 4.6 Hz, 2 H), 2.40 (s, 3 H), 1.66–1.57 (m, 2 H), 1.39–1.14 (m, 8 H), 0.86 (t, J = 6.8 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 178.4 (CH), 144.4 (C), 134.4 (C), 129.5 (2 × CH), 127.8 (2 × CH), 35.6 (CH2), 31.2 (CH2), 28.7 (CH2), 28.5 (CH2), 24.3 (CH2), 22.2 (CH2), 21.3 (CH3), 13.7 (CH3). IR (neat): ν = 3292, 1629, 1020, 737 cm–1.
  • 20 Please note that a minimum of 2.0 equiv of SmI2 are required to carry out this transformation in a stoichiometric manner.
  • 21 Since magnesium is normally coated with a layer of MgO, we have previously treated the magnesium turnings with a few crystals of iodine to activate its surface.
  • 22 Procedure for the Synthesis of Ethyl 3-(Tosylamino)-decanoate (3a) A solution of N-tosyloctan-1-imine (1a, 0.2 mmol) and ethyl bromoacetate (2a, 0.2 mmol) in THF (2.5 mL) was added dropwise at r.t. and vigorous stirring to a mixture of SmI2 (0.1 M in THF, 0.8 mL) and activated Mg (1.2 mmol) with iodine and ZnCl2 (1.2 mmol) in THF (2.5 mL). After stirring at the same temperature 3.5 h, the mixture was hydrolyzed with an aq solution of HCl (0.1 M, 10 mL). The aqueous phase was filtered through a pad of Celite® and extracted with CH2Cl2 (3 × 10 mL). The combined organic extracts were dried over Na2SO4 and concentrated in vacuo. Flash column chromatography on silica gel (hexane–EtOAc, 5:1) provided pure ethyl 3-(tosylamino)decanoate (3a) as a yellow oil (62 mg, 83%). 1H NMR (300 MHz, CDCl3): δ = 7.69 (d, J = 8.0 Hz, 2 H), 7.21 (d, J = 8.0 Hz, 2 H), 5.22 (d, J = 9.0 Hz, 1 H), 4.09–3.92 (m, 2 H), 3.50–3.38 (m, 1 H), 2.51 (ddd, J = 3.0, 15.0, 30.0 Hz, 2 H), 2.35 (s, 3 H), 1.47–1.06 (m, 12 H), 1.15 (t, J = 7.0 Hz, 3 H), 0.79 (t, J = 7.0 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 171.3 (C), 143.1 (C), 138.1 (C), 129.5 (2 × CH), 126.8 (2 × CH), 60.5 (CH2), 50.6 (CH), 41.2 (CH2), 38.8 (CH2), 34.6 (CH2), 31.6 (CH2), 29.1 (CH2), 28.9 (CH2), 25.6 (CH2), 22.5 (CH3), 21.4 (CH3), 13.9 (CH3). IR (neat): ν = 1747, 1331, 1160, 1094 cm–1. HRMS: m/z calcd for C19H32NO4S [M + H]+: 370.2052; found: 370.2049.
  • 23 For the synthesis of N-Boc imine 1g, see: Wenzel AG, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 12964
  • 24 Molander GA, Stengel PJ. J. Org. Chem. 1995; 60: 6660
  • 25 Spectroscopic Data of Compound 3e 1H NMR (300 MHz, CDCl3): δ = 7.54 (d, J = 8.2 Hz, 2 H), 7.14–7.10 (m, 5 H), 6.93 (d, J = 8.2 Hz, 2 H), 5.21 (d, J = 8.2 Hz, 1 H), 4.08–3.92 (m, 2 H), 3.74–3.63 (m, 1 H), 2.72 ( d, J = 6.0 Hz, 1 H), 2.71 (d, J = 6.0 Hz, 1 H), 2.37 (d, J = 5.2 Hz, 2 H), 2.32 (s, 3 H), 1.15 (t, J = 7.1 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 171.6 (C), 143.5 (C), 137.8 (C), 137.1 (C), 129.9 (2 × CH), 129.6 (2 × CH), 128.9 (2 × CH), 127.3 (2 × CH), 127.0 (CH), 61.0 (CH2), 52.2 (CH), 41.0 (CH2), 38.3 (CH2), 21.8 (CH3), 14.4 (CH3). IR (neat): ν = 2929, 1740, 1265, 1160, 738 cm–1. HRMS: m/z calcd for C19H24NO4S [M + H]+: 362.1426; found: 362.1428.