Semin Respir Crit Care Med 2014; 35(03): 285-295
DOI: 10.1055/s-0034-1376859
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Etiologic Role of Infectious Agents

Edward S. Chen
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland
,
David R. Moller
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
09 July 2014 (online)

Abstract

A consensus statement found in most peer-reviewed literature on sarcoidosis is that the etiology of sarcoidosis is unknown. It is timely to review whether this statement should be revised. Many infectious agents meet the basic requirements of inducing granulomatous inflammation and immunologic responses consistent with sarcoidosis including oligoclonal expansion of CD4+ T cells, polarized Th1 and possibly Th17 responses, and dysregulated regulatory T-cell function. Studies over the past decade provide increasing and complementary data to implicate a role for infectious agents in sarcoidosis etiology. These studies used different methodologies such as polymerase chain reaction and mass spectrometry to document microbial nucleic acids and proteins in sarcoidosis tissues. Multiple studies report antigen-specific immune responses to specific microbial proteins in sarcoidosis. In aggregate, these studies provide compelling evidence that mycobacteria play a major etiologic role in sarcoidosis in the United States and Europe. Studies from Japan support a role for Propionibacteria as a major etiologic agent in the country. There is controversy over how these (or other) infectious agents cause sarcoidosis. The hypothesis that chronic sarcoidosis is caused by a viable, replicating mycobacterial or other infection has no direct pathologic, microbiologic, or clinical evidence. A novel hypothesis links microbial triggers to a sarcoidosis outcome from the accumulation of aggregated proinflammatory serum amyloid A within granulomas, providing a mechanism for chronic disease in the absence of any viable tissue infection. Further studies are needed to provide more definitive evidence for these competing hypotheses before the statement that the etiology of sarcoidosis is unknown becomes obsolete.

 
  • References

  • 1 Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am J Respir Crit Care Med 1999; 160 (2) 736-755
  • 2 Saltini C, Amicosante M. Beryllium disease. Am J Med Sci 2001; 321 (1) 89-98
  • 3 Izbicki G, Chavko R, Banauch GI , et al. World Trade Center “sarcoid-like” granulomatous pulmonary disease in New York City Fire Department rescue workers. Chest 2007; 131 (5) 1414-1423
  • 4 Drake WP. When a commensal becomes a pathogen. Sarcoidosis Vasc Diffuse Lung Dis 2008; 25 (1) 10-11
  • 5 Eishi Y. Etiologic link between sarcoidosis and Propionibacterium acnes. Respir Investig 2013; 51 (2) 56-68
  • 6 Chen ES, Song Z, Willett MH , et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through Toll-like receptor-2. Am J Respir Crit Care Med 2010; 181 (4) 360-373
  • 7 Chen ES, Moller DR. Sarcoidosis—scientific progress and clinical challenges. Nat Rev Rheumatol 2011; 7 (8) 457-467
  • 8 Müller-Quernheim J, Prasse A, Zissel G. Pathogenesis of sarcoidosis. Presse Med 2012; 41 (6, Pt 2) e275-e287
  • 9 Clay H, Davis JM, Beery D, Huttenlocher A, Lyons SE, Ramakrishnan L. Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2007; 2 (1) 29-39
  • 10 Romagnani S. Regulation of the T cell response. Clin Exp Allergy 2006; 36 (11) 1357-1366
  • 11 Simonian PL, Roark CL, Wehrmann F , et al. Th17-polarized immune response in a murine model of hypersensitivity pneumonitis and lung fibrosis. J Immunol 2009; 182 (1) 657-665
  • 12 Joshi AD, Fong DJ, Oak SR , et al. Interleukin-17-mediated immunopathogenesis in experimental hypersensitivity pneumonitis. Am J Respir Crit Care Med 2009; 179 (8) 705-716
  • 13 Moller DR, Forman JD, Liu MC , et al. Enhanced expression of IL-12 associated with Th1 cytokine profiles in active pulmonary sarcoidosis. J Immunol 1996; 156 (12) 4952-4960
  • 14 Zissel G, Prasse A, Müller-Quernheim J. Sarcoidosis—immunopathogenetic concepts. Semin Respir Crit Care Med 2007; 28 (1) 3-14
  • 15 Greene CM, Meachery G, Taggart CC , et al. Role of IL-18 in CD4+ T lymphocyte activation in sarcoidosis. J Immunol 2000; 165 (8) 4718-4724
  • 16 Shigehara K, Shijubo N, Ohmichi M , et al. IL-12 and IL-18 are increased and stimulate IFN-gamma production in sarcoid lungs. J Immunol 2001; 166 (1) 642-649
  • 17 Dagur PK, Biancotto A, Wei L , et al. MCAM-expressing CD4(+) T cells in peripheral blood secrete IL-17A and are significantly elevated in inflammatory autoimmune diseases. J Autoimmun 2011; 37 (4) 319-327
  • 18 Facco M, Cabrelle A, Teramo A , et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax 2011; 66 (2) 144-150
  • 19 Ten Berge B, Paats MS, Bergen IM , et al. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford) 2012; 51 (1) 37-46
  • 20 Wikén M, Idali F, Al Hayja MA, Grunewald J, Eklund A, Wahlström J. No evidence of altered alveolar macrophage polarization, but reduced expression of TLR2, in bronchoalveolar lavage cells in sarcoidosis. Respir Res 2010; 11: 121
  • 21 Judson MA, Marchell RM, Mascelli M , et al. Molecular profiling and gene expression analysis in cutaneous sarcoidosis: the role of interleukin-12, interleukin-23, and the T-helper 17 pathway. J Am Acad Dermatol 2012; 66 (6) 901-910 , e1–e2
  • 22 Moller DR. Involvement of T cells and alterations in T cell receptors in sarcoidosis. Semin Respir Infect 1998; 13 (3) 174-183
  • 23 Moller DR. T-cell receptor genes in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 1998; 15 (2) 158-164
  • 24 Klein JT, Horn TD, Forman JD, Silver RF, Teirstein AS, Moller DR. Selection of oligoclonal V beta-specific T cells in the intradermal response to Kveim-Siltzbach reagent in individuals with sarcoidosis. J Immunol 1995; 154 (3) 1450-1460
  • 25 Grunewald J, Janson CH, Eklund A , et al. Restricted V alpha 2.3 gene usage by CD4+ T lymphocytes in bronchoalveolar lavage fluid from sarcoidosis patients correlates with HLA-DR3. Eur J Immunol 1992; 22 (1) 129-135
  • 26 Grunewald J, Hultman T, Bucht A, Eklund A, Wigzell H. Restricted usage of T cell receptor V alpha/J alpha gene segments with different nucleotide but identical amino acid sequences in HLA-DR3+ sarcoidosis patients. Mol Med 1995; 1 (3) 287-296
  • 27 Miyara M, Amoura Z, Parizot C , et al. The immune paradox of sarcoidosis and regulatory T cells. J Exp Med 2006; 203 (2) 359-370
  • 28 Taflin C, Miyara M, Nochy D , et al. FoxP3+ regulatory T cells suppress early stages of granuloma formation but have little impact on sarcoidosis lesions. Am J Pathol 2009; 174 (2) 497-508
  • 29 Rappl G, Pabst S, Riemann D , et al. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation. Clin Immunol 2011; 140 (1) 71-83
  • 30 Prasse A, Zissel G, Lützen N , et al. Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am J Respir Crit Care Med 2010; 182 (4) 540-548
  • 31 Wikén M, Grunewald J, Eklund A, Wahlström J. Higher monocyte expression of TLR2 and TLR4, and enhanced pro-inflammatory synergy of TLR2 with NOD2 stimulation in sarcoidosis. J Clin Immunol 2009; 29 (1) 78-89
  • 32 Gabrilovich MI, Walrath J, van Lunteren J , et al. Disordered Toll-like receptor 2 responses in the pathogenesis of pulmonary sarcoidosis. Clin Exp Immunol 2013; 173 (3) 512-522
  • 33 Veltkamp M, Wijnen PA, van Moorsel CH , et al. Linkage between Toll-like receptor (TLR) 2 promotor and intron polymorphisms: functional effects and relevance to sarcoidosis. Clin Exp Immunol 2007; 149 (3) 453-462
  • 34 Sato M, Kawagoe T, Meguro A , et al. Toll-like receptor 2 (TLR2) gene polymorphisms are not associated with sarcoidosis in the Japanese population. Mol Vis 2011; 17: 731-736
  • 35 Daniil Z, Mollaki V, Malli F , et al. Polymorphisms and haplotypes in MyD88 are associated with the development of sarcoidosis: a candidate-gene association study. Mol Biol Rep 2013; 40 (7) 4281-4286
  • 36 Rastogi R, Du W, Ju D , et al. Dysregulation of p38 and MKP-1 in response to NOD1/TLR4 stimulation in sarcoid bronchoalveolar cells. Am J Respir Crit Care Med 2011; 183 (4) 500-510
  • 37 Kanazawa N, Okafuji I, Kambe N , et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 2005; 105 (3) 1195-1197
  • 38 Martin TM, Doyle TM, Smith JR, Dinulescu D, Rust K, Rosenbaum JT. Uveitis in patients with sarcoidosis is not associated with mutations in NOD2 (CARD15). Am J Ophthalmol 2003; 136 (5) 933-935
  • 39 Schürmann M, Valentonyte R, Hampe J, Müller-Quernheim J, Schwinger E, Schreiber S. CARD15 gene mutations in sarcoidosis. Eur Respir J 2003; 22 (5) 748-754
  • 40 Milman N, Nielsen OH, Hviid TV, Fenger K. CARD15 single nucleotide polymorphisms 8, 12 and 13 are not increased in ethnic Danes with sarcoidosis. Respiration 2007; 74 (1) 76-79
  • 41 Akahoshi M, Ishihara M, Namba K , et al. Mutation screening of the CARD15 gene in sarcoidosis. Tissue Antigens 2008; 71 (6) 564-567
  • 42 Wilsher ML. Seasonal clustering of sarcoidosis presenting with erythema nodosum. Eur Respir J 1998; 12 (5) 1197-1199
  • 43 Parkes SA, Baker SB, Bourdillon RE , et al. Incidence of sarcoidosis in the Isle of Man. Thorax 1985; 40 (4) 284-287
  • 44 Hosoda Y, Hiraga Y, Odaka M , et al. A cooperative study of sarcoidosis in Asia and Africa: analytic epidemiology. Ann N Y Acad Sci 1976; 278: 355-367
  • 45 Sutherland I, Mitchell DN, Hart PD. Incidence of intrathoracic sarcoidosis among young adults participating in a trial of tuberculosis vaccines. BMJ 1965; 2 (5460) 497-503
  • 46 Newman LS, Rose CS, Bresnitz EA , et al; ACCESS Research Group. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med 2004; 170 (12) 1324-1330
  • 47 Williams RH, Nickerson DA. Skin reactions in sarcoid. Proc Soc Exp Biol Med 1935; 33: 403-405
  • 48 Kveim A. En ny og spesifikk kutan-reacksjon ved Boecks Sarcoid (On a new and specific cutaneous reaction in Boeck's sarcoid). Nord Med 1941; 9: 169-172
  • 49 Chase MW. The preparation and standardization of Kveim testing antigen. Am Rev Respir Dis 1961; 84 (5) 86-88
  • 50 Kooij R, Gerritsen T. On the nature of the Mitsuda and the Kveim reaction. Dermatologica 1958; 116 (1) 1-27
  • 51 Siltzbach LE. The Kveim test in sarcoidosis. A study of 750 patients. JAMA 1961; 178: 476-482
  • 52 Teirstein AS. Kveim antigen: what does it tell us about causation of sarcoidosis?. Semin Respir Infect 1998; 13 (3) 206-211
  • 53 Tüzüner N, Ulkü B, Uraz S, Güngen G, Demiric S, Celikoglu S. The distribution of T cell subsets of Kveim and sarcoid granulomata. An immunohistological investigation of blood, Kveim test sites and sarcoid tissue lesions from 16 patients. Sarcoidosis 1991; 8 (1) 14-18
  • 54 Munro CS, Mitchell DN. The Kveim response: still useful, still a puzzle. Thorax 1987; 42 (5) 321-331
  • 55 Song Z, Marzilli L, Greenlee BM , et al. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis. J Exp Med 2005; 201 (5) 755-767
  • 56 Mitchell DN, Rees RJ, Goswami KK. Transmissible agents from human sarcoid and Crohn's disease tissues. Lancet 1976; 2 (7989) 761-765
  • 57 Mitchell DN, Rees RJ. A transmissible agent from sarcoid tissue. Lancet 1969; 2 (7611) 81-84
  • 58 Almenoff PL, Johnson A, Lesser M, Mattman LH. Growth of acid fast L forms from the blood of patients with sarcoidosis. Thorax 1996; 51 (5) 530-533
  • 59 Brown ST, Brett I, Almenoff PL, Lesser M, Terrin M, Teirstein AS ; ACCESS Research Group. Recovery of cell wall-deficient organisms from blood does not distinguish between patients with sarcoidosis and control subjects. Chest 2003; 123 (2) 413-417
  • 60 Heyll A, Meckenstock G, Aul C , et al. Possible transmission of sarcoidosis via allogeneic bone marrow transplantation. Bone Marrow Transplant 1994; 14 (1) 161-164
  • 61 Sundar KM, Carveth HJ, Gosselin MV, Beatty PG, Colby TV, Hoidal JR. Granulomatous pneumonitis following bone marrow transplantation. Bone Marrow Transplant 2001; 28 (6) 627-630
  • 62 Gooneratne L, Lim ZY, Vivier Ad , et al. Sarcoidosis as an unusual cause of hepatic dysfunction following reduced intensity conditioned allogeneic stem cell transplantation. Bone Marrow Transplant 2007; 39 (8) 511-512
  • 63 Morita R, Hashino S, Kubota K , et al. Donor cell-derived sarcoidosis after allogeneic BMT. Bone Marrow Transplant 2009; 43 (6) 507-508
  • 64 Pukiat S, McCarthy Jr PL, Hahn T , et al. Sarcoidosis-associated MHC Ags and the development of cutaneous and nodal granulomas following allogeneic hematopoietic cell transplant. Bone Marrow Transplant 2011; 46 (7) 1032-1034
  • 65 Johnson BA, Duncan SR, Ohori NP , et al. Recurrence of sarcoidosis in pulmonary allograft recipients. Am Rev Respir Dis 1993; 148 (5) 1373-1377
  • 66 Ramakers K, De Wever W, Coolen J, Verschakelen J. Recurrent sarcoidosis after lung transplantation. JBR-BTR 2012; 95 (6) 368
  • 67 Fidler HM, Hadziyannis SJ, Dhillon AP, Sherlock S, Burroughs AK. Recurrent hepatic sarcoidosis following liver transplantation. Transplant Proc 1997; 29 (5) 2509-2510
  • 68 Vanatta JM, Modanlou KA, Dean AG , et al. Outcomes of orthotopic liver transplantation for hepatic sarcoidosis: an analysis of the United Network for Organ Sharing/Organ Procurement and Transplantation Network data files for a comparative study with cholestatic liver diseases. Liver Transpl 2011; 17 (9) 1027-1034
  • 69 Oni AA, Hershberger RE, Norman DJ , et al. Recurrence of sarcoidosis in a cardiac allograft: control with augmented corticosteroids. J Heart Lung Transplant 1992; 11 (2, Pt 1) 367-369
  • 70 Akashi H, Kato TS, Takayama H , et al. Outcome of patients with cardiac sarcoidosis undergoing cardiac transplantation—single-center retrospective analysis. J Cardiol 2012; 60 (5) 407-410
  • 71 Shen SY, Hall-Craggs M, Posner JN, Shabazz B. Recurrent sarcoid granulomatous nephritis and reactive tuberculin skin test in a renal transplant recipient. Am J Med 1986; 80 (4) 699-702
  • 72 Aouizerate J, Matignon M, Kamar N , et al. Renal transplantation in patients with sarcoidosis: a French multicenter study. Clin J Am Soc Nephrol 2010; 5 (11) 2101-2108
  • 73 Milman N, Andersen CB, Burton CM, Iversen M. Recurrent sarcoid granulomas in a transplanted lung derive from recipient immune cells. Eur Respir J 2005; 26 (3) 549-552
  • 74 Klemen H, Husain AN, Cagle PT, Garrity ER, Popper HH. Mycobacterial DNA in recurrent sarcoidosis in the transplanted lung—a PCR-based study on four cases. Virchows Arch 2000; 436 (4) 365-369
  • 75 Segal JL, Thompson JF, Charter RA. A novel immunogen to modulate cytokine production and promote immune system reconstitution in HIV-AIDS. Am J Ther 2012; 19 (5) 317-323
  • 76 Hanngren A, Odham G, Eklund A, Hoffner S, Stjernberg N, Westerdahl G. Tuberculostearic acid in lymph nodes from patients with sarcoidosis. Sarcoidosis 1987; 4 (2) 101-104
  • 77 Gupta D, Agarwal R, Aggarwal AN, Jindal SK. Molecular evidence for the role of mycobacteria in sarcoidosis: a meta-analysis. Eur Respir J 2007; 30 (3) 508-516
  • 78 Chen ES, Wahlström J, Song Z , et al. T cell responses to mycobacterial catalase-peroxidase profile a pathogenic antigen in systemic sarcoidosis. J Immunol 2008; 181 (12) 8784-8796
  • 79 Dubaniewicz A, Dubaniewicz-Wybieralska M, Sternau A , et al. Mycobacterium tuberculosis complex and mycobacterial heat shock proteins in lymph node tissue from patients with pulmonary sarcoidosis. J Clin Microbiol 2006; 44 (9) 3448-3451
  • 80 Oswald-Richter KA, Beachboard DC, Seeley EH , et al. Dual analysis for mycobacteria and propionibacteria in sarcoidosis BAL. J Clin Immunol 2012; 32 (5) 1129-1140
  • 81 Chapman JS. Mycobacterial and mycotic antibodies in sera of patients with sarcoidosis. Results of studies using agar double-diffusion technique. Ann Intern Med 1961; 55: 918-924
  • 82 Reid JD, Chiodini RJ. Serologic reactivity against Mycobacterium paratuberculosis antigens in patients with sarcoidosis. Sarcoidosis 1993; 10 (1) 32-35
  • 83 Drake WP, Dhason MS, Nadaf M , et al. Cellular recognition of Mycobacterium tuberculosis ESAT-6 and KatG peptides in systemic sarcoidosis. Infect Immun 2007; 75 (1) 527-530
  • 84 Dubaniewicz A, Trzonkowski P, Dubaniewicz-Wybieralska M, Dubaniewicz A, Singh M, Myśliwski A. Mycobacterial heat shock protein-induced blood T lymphocytes subsets and cytokine pattern: comparison of sarcoidosis with tuberculosis and healthy controls. Respirology 2007; 12 (3) 346-354
  • 85 Oswald-Richter KA, Beachboard DC, Zhan X , et al. Multiple mycobacterial antigens are targets of the adaptive immune response in pulmonary sarcoidosis. Respir Res 2010; 11: 161
  • 86 Agarwal R, Gupta D, Srinivas R, Verma I, Aggarwal AN, Laal S. Analysis of humoral responses to proteins encoded by region of difference 1 of Mycobacterium tuberculosis in sarcoidosis in a high tuberculosis prevalence country. Indian J Med Res 2012; 135 (6) 920-923
  • 87 Ahmadzai H, Cameron B, Chui JJ, Lloyd A, Wakefield D, Thomas PS. Peripheral blood responses to specific antigens and CD28 in sarcoidosis. Respir Med 2012; 106 (5) 701-709
  • 88 Inui N, Suda T, Chida K. Use of the QuantiFERON-TB Gold test in Japanese patients with sarcoidosis. Respir Med 2008; 102 (2) 313-315
  • 89 Hörster R, Kirsten D, Gaede KI , et al. Antimycobacterial immune responses in patients with pulmonary sarcoidosis. Clin Respir J 2009; 3 (4) 229-238
  • 90 Rossman MD, Thompson B, Frederick M , et al; ACCESS Group. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet 2003; 73 (4) 720-735
  • 91 Oswald-Richter K, Sato H, Hajizadeh R , et al. Mycobacterial ESAT-6 and katG are recognized by sarcoidosis CD4+ T cells when presented by the American sarcoidosis susceptibility allele, DRB1*1101. J Clin Immunol 2010; 30 (1) 157-166
  • 92 Wikén M, Ostadkarampour M, Eklund A , et al. Antigen-specific multifunctional T-cells in sarcoidosis patients with Lofgren's syndrome. Eur Respir J 2012; 40 (1) 110-121
  • 93 Koth LL, Solberg OD, Peng JC, Bhakta NR, Nguyen CP, Woodruff PG. Sarcoidosis blood transcriptome reflects lung inflammation and overlaps with tuberculosis. Am J Respir Crit Care Med 2011; 184 (10) 1153-1163
  • 94 Thillai M, Eberhardt C, Lewin AM , et al. Sarcoidosis and tuberculosis cytokine profiles: indistinguishable in bronchoalveolar lavage but different in blood. PLoS ONE 2012; 7 (7) e38083
  • 95 Maertzdorf J, Weiner III J, Mollenkopf HJ , et al; TBornotTB Network. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci U S A 2012; 109 (20) 7853-7858
  • 96 Zhou T, Zhang W, Sweiss NJ , et al. Peripheral blood gene expression as a novel genomic biomarker in complicated sarcoidosis. PLoS ONE 2012; 7 (9) e44818
  • 97 Milman N, Lisby G, Friis S, Kemp L. Prolonged culture for mycobacteria in mediastinal lymph nodes from patients with pulmonary sarcoidosis. A negative study. Sarcoidosis Vasc Diffuse Lung Dis 2004; 21 (1) 25-28
  • 98 Drake WP, Oswald-Richter K, Richmond BW , et al. Oral antimycobacterial therapy in chronic cutaneous sarcoidosis: a randomized, single-masked, placebo-controlled study. JAMA Dermatol 2013; 149 (9) 1040-1049
  • 99 Homma JY, Abe C, Chosa H , et al. Bacteriological investigation on biopsy specimens from patients with sarcoidosis. Jpn J Exp Med 1978; 48 (3) 251-255
  • 100 Eishi Y, Suga M, Ishige I , et al. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J Clin Microbiol 2002; 40 (1) 198-204
  • 101 Ebe Y, Ikushima S, Yamaguchi T , et al. Proliferative response of peripheral blood mononuclear cells and levels of antibody to recombinant protein from Propionibacterium acnes DNA expression library in Japanese patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2000; 17 (3) 256-265
  • 102 Nishiwaki T, Yoneyama H, Eishi Y , et al. Indigenous pulmonary Propionibacterium acnes primes the host in the development of sarcoid-like pulmonary granulomatosis in mice. Am J Pathol 2004; 165 (2) 631-639
  • 103 McCaskill JG, Chason KD, Hua X , et al. Pulmonary immune responses to Propionibacterium acnes in C57BL/6 and BALB/c mice. Am J Respir Cell Mol Biol 2006; 35 (3) 347-356
  • 104 Ishige I, Eishi Y, Takemura T , et al. Propionibacterium acnes is the most common bacterium commensal in peripheral lung tissue and mediastinal lymph nodes from subjects without sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2005; 22 (1) 33-42
  • 105 Derler AM, Eisendle K, Baltaci M, Obermoser G, Zelger B. High prevalence of 'Borrelia-like' organisms in skin biopsies of sarcoidosis patients from Western Austria. J Cutan Pathol 2009; 36 (12) 1262-1268
  • 106 Arcangeli G, Calabro S, Cisno F, Zambotto FM, Drigo R, Ferraresso A. Determination of antibodies to Borrelia burgdorferi in sarcoidosis. Sarcoidosis 1994; 11 (1) 32-33
  • 107 Morris JT, Longfield RN. Sarcoidosis and ELISA for Borrelia burgdorferi. South Med J 1994; 87 (6) 590-591
  • 108 Ishihara M, Ishida T, Isogai E , et al. Detection of antibodies to Borrelia species among patients with confirmed sarcoidosis in a region where Lyme disease is nonendemic. Graefes Arch Clin Exp Ophthalmol 1996; 234 (12) 770-773
  • 109 Xu Z, Ma D, Luo W, Zhu Y. Detection of Borrelia burgdorferi DNA in granulomatous tissues from patients with sarcoidosis using polymerase chain reaction in situ technique. Chin Med Sci J 1996; 11 (4) 220-223
  • 110 Martens H, Zöllner B, Zissel G, Burdon D, Schlaak M, Müller-Quernheim J. Anti-Borrelia burgdorferi immunoglobulin seroprevalence in pulmonary sarcoidosis: a negative report. Eur Respir J 1997; 10 (6) 1356-1358
  • 111 Fretzayas A, Moustaki M, Priftis KN, Yiallouros P, Paschalidou M, Nicolaidou P. Bilateral hilar lymphadenopathy due to Chlamydia pneumoniae infection. Pediatr Pulmonol 2011; 46 (10) 1038-1040
  • 112 Yano S, Kobayashi K, Ikeda T , et al. Sarcoid-like reaction in Cryptococcus neoformans infection. BMJ Case Rep 2012; 2012
  • 113 Lebbé C, Agbalika F, Flageul B , et al. No evidence for a role of human herpesvirus type 8 in sarcoidosis: molecular and serological analysis. Br J Dermatol 1999; 141 (3) 492-496
  • 114 Biberfeld P, Petrén AL, Eklund A , et al. Human herpesvirus-6 (HHV-6, HBLV) in sarcoidosis and lymphoproliferative disorders. J Virol Methods 1988; 21 (1–4) 49-59
  • 115 Di Alberti L, Piattelli A, Artese L , et al. Human herpesvirus 8 variants in sarcoid tissues. Lancet 1997; 350 (9092) 1655-1661
  • 116 McKee DH, Young AC, Haeney M. Sarcoidosis and HTLV-1 infection. J Clin Pathol 2005; 58 (9) 996-997
  • 117 Rottoli P, Bianchi Bandinelli ML, Rottoli L, Zazzi M, Panzardi G, Valensin PE. Sarcoidosis and infections by human lymphotropic viruses. Sarcoidosis 1990; 7 (1) 31-33
  • 118 Saltini C, Pallante M, Puxeddu E , et al. M. avium binding to HLA-DR expressed alleles in silico: a model of phenotypic susceptibility to sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2008; 25 (2) 100-116
  • 119 Zhou Y, Li HP, Li QH , et al. Differentiation of sarcoidosis from tuberculosis using real-time PCR assay for the detection and quantification of Mycobacterium tuberculosis. Sarcoidosis Vasc Diffuse Lung Dis 2008; 25 (2) 93-99
  • 120 Uhlar CM, Whitehead AS. Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem 1999; 265 (2) 501-523
  • 121 Cheng N, He R, Tian J, Ye PP, Ye RD. Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J Immunol 2008; 181 (1) 22-26
  • 122 Okamoto H, Katagiri Y, Kiire A, Momohara S, Kamatani N. Serum amyloid A activates nuclear factor-kappaB in rheumatoid synovial fibroblasts through binding to receptor of advanced glycation end-products. J Rheumatol 2008; 35 (5) 752-756
  • 123 Eklund KK, Niemi K, Kovanen PT. Immune functions of serum amyloid A. Crit Rev Immunol 2012; 32 (4) 335-348
  • 124 Ye Z, Bayron Poueymiroy D, Aguilera JJ , et al. Inflammation protein SAA2.2 spontaneously forms marginally stable amyloid fibrils at physiological temperature. Biochemistry 2011; 50 (43) 9184-9191
  • 125 Kim SR, Kondo F, Otono Y , et al. Serum amyloid A and C-reactive protein positive nodule in alcoholic liver cirrhosis, hard to make definite diagnosis. Hepatol Res 2013;
  • 126 Cosma CL, Humbert O, Ramakrishnan L. Superinfecting mycobacteria home to established tuberculous granulomas. Nat Immunol 2004; 5 (8) 828-835
  • 127 Ehrenfeld M, Levartowsky D. Serum amyloid-A protein and sarcoidosis. Isr J Med Sci 1989; 25 (8) 418-420
  • 128 Salazar A, Maña J, Fiol C , et al. Influence of serum amyloid A on the decrease of high density lipoprotein-cholesterol in active sarcoidosis. Atherosclerosis 2000; 152 (2) 497-502
  • 129 Rubinstein I, Knecht A, de Beer FC, Baum GL, Pras M. Serum amyloid-A protein concentrations in sarcoidosis. Isr J Med Sci 1989; 25 (8) 461-462
  • 130 De Vries J, Rothkrantz-Kos S, van Dieijen-Visser MP, Drent M. The relationship between fatigue and clinical parameters in pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2004; 21 (2) 127-136
  • 131 Miyoshi S, Hamada H, Kadowaki T , et al. Comparative evaluation of serum markers in pulmonary sarcoidosis. Chest 2010; 137 (6) 1391-1397
  • 132 Bargagli E, Magi B, Olivieri C, Bianchi N, Landi C, Rottoli P. Analysis of serum amyloid A in sarcoidosis patients. Respir Med 2011; 105 (5) 775-780