Semin intervent Radiol 2014; 31(02): 212-224
DOI: 10.1055/s-0034-1373796
Technical Corner
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Technical and Practical Considerations for Device Selection in Locoregional Ablative Therapy

Sean P. Zivin
1   Division of Interventional Radiology, Department of Radiology, University of Illinois Hospital and Health Sciences System, Chicago, Illinois
,
Ron C. Gaba
1   Division of Interventional Radiology, Department of Radiology, University of Illinois Hospital and Health Sciences System, Chicago, Illinois
› Author Affiliations
Further Information

Publication History

Publication Date:
21 May 2014 (online)

Abstract

Percutaneous ablation therapy is an essential component of contemporary interventional oncologic therapy of primary and secondary malignancies. The growing armamentarium of available ablation technologies calls for thorough understanding of the different ablation modalities to optimize device selection in individual clinical settings. The goal of the current article is to provide direction on ablative device selection by reviewing device mechanisms of action, advantages and disadvantages, and practical considerations in real-life case scenarios.

 
  • References

  • 1 Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol 1996; 3 (3) 212-218
  • 2 Saldanha DF, Khiatani VL, Carrillo TC , et al. Current tumor ablation technologies: basic science and device review. Semin Intervent Radiol 2010; 27 (3) 247-254
  • 3 Ahmed M, Brace CL, Lee Jr FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011; 258 (2) 351-369
  • 4 Lubner MG, Brace CL, Hinshaw JL, Lee Jr FT. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol 2010; 21 (8, Suppl): S192-S203
  • 5 Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol 2010; 21 (8, Suppl): S187-S191
  • 6 Al-Sakere B, André F, Bernat C , et al. Tumor ablation with irreversible electroporation. PLoS ONE 2007; 2 (11) e1135
  • 7 Pech M, Janitzky A, Wendler JJ , et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol 2011; 34 (1) 132-138
  • 8 Bruix J, Sherman M ; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53 (3) 1020-1022
  • 9 McWilliams JP, Yamamoto S, Raman SS , et al. Percutaneous ablation of hepatocellular carcinoma: current status. J Vasc Interv Radiol 2010; 21 (8, Suppl): S204-S213
  • 10 Chen MS, Li JQ, Zheng Y , et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg 2006; 243 (3) 321-328
  • 11 Huang J, Yan L, Cheng Z , et al. A randomized trial comparing radiofrequency ablation and surgical resection for HCC conforming to the Milan criteria. Ann Surg 2010; 252 (6) 903-912
  • 12 Jaskolka JD, Asch MR, Kachura JR , et al. Needle tract seeding after radiofrequency ablation of hepatic tumors. J Vasc Interv Radiol 2005; 16 (4) 485-491
  • 13 McGhana JP, Dodd III GD. Radiofrequency ablation of the liver: current status. AJR Am J Roentgenol 2001; 176 (1) 3-16
  • 14 Lu DS, Yu NC, Raman SS , et al. Radiofrequency ablation of hepatocellular carcinoma: treatment success as defined by histologic examination of the explanted liver. Radiology 2005; 234 (3) 954-960
  • 15 Wright AS, Sampson LA, Warner TF, Mahvi DM, Lee Jr FT. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 2005; 236 (1) 132-139
  • 16 Livraghi T, Bolondi L, Lazzaroni S , et al. Percutaneous ethanol injection in the treatment of hepatocellular carcinoma in cirrhosis. A study on 207 patients. Cancer 1992; 69 (4) 925-929
  • 17 Ishii H, Okada S, Nose H , et al. Local recurrence of hepatocellular carcinoma after percutaneous ethanol injection. Cancer 1996; 77 (9) 1792-1796
  • 18 Okada S. Local ablation therapy for hepatocellular carcinoma. Semin Liver Dis 1999; 19 (3) 323-328
  • 19 Mostafa EM, Ganguli S, Faintuch S, Mertyna P, Goldberg SN. Optimal strategies for combining transcatheter arterial chemoembolization and radiofrequency ablation in rabbit VX2 hepatic tumors. J Vasc Interv Radiol 2008; 19 (12) 1740-1748
  • 20 Morimoto M, Numata K, Kondou M, Nozaki A, Morita S, Tanaka K. Midterm outcomes in patients with intermediate-sized hepatocellular carcinoma: a randomized controlled trial for determining the efficacy of radiofrequency ablation combined with transcatheter arterial chemoembolization. Cancer 2010; 116 (23) 5452-5460
  • 21 Peng ZW, Zhang YJ, Chen MS , et al. Radiofrequency ablation with or without transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma: a prospective randomized trial. J Clin Oncol 2013; 31 (4) 426-432
  • 22 Seki T, Tamai T, Nakagawa T , et al. Combination therapy with transcatheter arterial chemoembolization and percutaneous microwave coagulation therapy for hepatocellular carcinoma. Cancer 2000; 89 (6) 1245-1251
  • 23 Yang WZ, Jiang N, Huang N, Huang JY, Zheng QB, Shen Q. Combined therapy with transcatheter arterial chemoembolization and percutaneous microwave coagulation for small hepatocellular carcinoma. World J Gastroenterol 2009; 15 (6) 748-752
  • 24 Xu LF, Sun HL, Chen YT , et al. Large primary hepatocellular carcinoma: transarterial chemoembolization monotherapy versus combined transarterial chemoembolization-percutaneous microwave coagulation therapy. J Gastroenterol Hepatol 2013; 28 (3) 456-463
  • 25 Gaba RC. Chemoembolization practice patterns and technical methods among interventional radiologists: results of an online survey. AJR Am J Roentgenol 2012; 198 (3) 692-699
  • 26 Carmi L, Georgiades C. Combination percutaneous and intraarterial therapy for the treatment of hepatocellular carcinoma: a review. Semin Intervent Radiol 2010; 27 (3) 296-301
  • 27 Clark TW, Millward SF, Gervais DA , et al; Technology Assessment Committee of the Society of Interventional Radiology. Reporting standards for percutaneous thermal ablation of renal cell carcinoma. J Vasc Interv Radiol 2009; 20 (7, Suppl): S409-S416
  • 28 Thumar AB, Trabulsi EJ, Lallas CD, Brown DB. Thermal ablation of renal cell carcinoma: triage, treatment, and follow-up. J Vasc Interv Radiol 2010; 21 (8, Suppl): S233-S241
  • 29 Gervais DA. Cryoablation versus radiofrequency ablation for renal tumor ablation: time to reassess?. J Vasc Interv Radiol 2013; 24 (8) 1135-1138
  • 30 Gervais DA, Arellano RS, McGovern FJ, McDougal WS, Mueller PR. Radiofrequency ablation of renal cell carcinoma: part 2, Lessons learned with ablation of 100 tumors. AJR Am J Roentgenol 2005; 185 (1) 72-80
  • 31 Kam AW, Littrup PJ, Walther MM, Hvizda J, Wood BJ. Thermal protection during percutaneous thermal ablation of renal cell carcinoma. J Vasc Interv Radiol 2004; 15 (7) 753-758
  • 32 Cantwell CP, Wah TM, Gervais DA , et al. Protecting the ureter during radiofrequency ablation of renal cell cancer: a pilot study of retrograde pyeloperfusion with cooled dextrose 5% in water. J Vasc Interv Radiol 2008; 19 (7) 1034-1040
  • 33 Pua BB, Thornton RH, Solomon SB. Ablation of pulmonary malignancy: current status. J Vasc Interv Radiol 2010; 21 (8, Suppl) S223-S232
  • 34 Yashiro H, Nakatsuka S, Inoue M , et al. Factors affecting local progression after percutaneous cryoablation of lung tumors. J Vasc Interv Radiol 2013; 24 (6) 813-821
  • 35 Inoue M, Nakatsuka S, Yashiro H , et al. Percutaneous cryoablation of lung tumors: feasibility and safety. J Vasc Interv Radiol 2012; 23 (3) 295-302 , quiz 305
  • 36 Ahrar K, Littrup PJ. Is cryotherapy the optimal technology for ablation of lung tumors?. J Vasc Interv Radiol 2012; 23 (3) 303-305
  • 37 Wang H, Littrup PJ, Duan Y, Zhang Y, Feng H, Nie Z. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology 2005; 235 (1) 289-298
  • 38 Wolf FJ, Grand DJ, Machan JT, Dipetrillo TA, Mayo-Smith WW, Dupuy DE. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology 2008; 247 (3) 871-879
  • 39 Vogl TJ, Naguib NN, Gruber-Rouh T, Koitka K, Lehnert T, Nour-Eldin NE. Microwave ablation therapy: clinical utility in treatment of pulmonary metastases. Radiology 2011; 261 (2) 643-651
  • 40 Khairy P, Chauvet P, Lehmann J , et al. Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation. Circulation 2003; 107 (15) 2045-2050
  • 41 Earhart J, Wellman D, Donaldson J, Chesterton J, King E, Janicki JA. Radiofrequency ablation in the treatment of osteoid osteoma: results and complications. Pediatr Radiol 2013; 43 (7) 814-819
  • 42 Kostrzewa M, Diezler P, Michaely H , et al. Microwave ablation of osteoid osteomas using dynamic MR imaging for early treatment assessment: preliminary experience. J Vasc Interv Radiol 2014; 25 (1) 106-111
  • 43 Liu DM, Kee ST, Loh CT , et al. Cryoablation of osteoid osteoma: two case reports. J Vasc Interv Radiol 2010; 21 (4) 586-589
  • 44 Donkol RH, Al-Nammi A, Moghazi K. Efficacy of percutaneous radiofrequency ablation of osteoid osteoma in children. Pediatr Radiol 2008; 38 (2) 180-185
  • 45 Veth R, Schreuder B, van Beem H, Pruszczynski M, de Rooy J. Cryosurgery in aggressive, benign, and low-grade malignant bone tumours. Lancet Oncol 2005; 6 (1) 25-34
  • 46 Souna BS, Belot N, Duval H, Langlais F, Thomazeau H. No recurrences in selected patients after curettage with cryotherapy for grade I chondrosarcomas. Clin Orthop Relat Res 2010; 468 (7) 1956-1962
  • 47 Callstrom MR, Kurup AN. Percutaneous ablation for bone and soft tissue metastases—why cryoablation?. Skeletal Radiol 2009; 38 (9) 835-839
  • 48 Faroja M, Ahmed M, Appelbaum L , et al. Irreversible electroporation ablation: is all the damage nonthermal?. Radiology 2013; 266 (2) 462-470
  • 49 Maor E, Ivorra A, Leor J, Rubinsky B. The effect of irreversible electroporation on blood vessels. Technol Cancer Res Treat 2007; 6 (4) 307-312
  • 50 Cannon R, Ellis S, Hayes D, Narayanan G, Martin II RC. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J Surg Oncol 2013; 107 (5) 544-549
  • 51 Kingham TP, Karkar AM, D'Angelica MI , et al. Ablation of perivascular hepatic malignant tumors with irreversible electroporation. J Am Coll Surg 2012; 215 (3) 379-387
  • 52 Cheung W, Kavnoudias H, Roberts S, Szkandera B, Kemp W, Thomson KR. Irreversible electroporation for unresectable hepatocellular carcinoma: initial experience and review of safety and outcomes. Technol Cancer Res Treat 2013; 12 (3) 233-241
  • 53 Neal II RE, Millar JL, Kavnoudias H , et al. In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation. Prostate 2014; 74 (5) 458-468
  • 54 Narayanan G, Hosein PJ, Arora G , et al. Percutaneous irreversible electroporation for downstaging and control of unresectable pancreatic adenocarcinoma. J Vasc Interv Radiol 2012; 23 (12) 1613-1621
  • 55 Wendler JJ, Porsch M, Hühne S , et al. Short-and mid-term effects of irreversible electroporation on normal renal tissue: an animal model. Cardiovasc Intervent Radiol 2013; 36 (2) 512-520