Semin Neurol 2014; 34(01): 078-088
DOI: 10.1055/s-0034-1372345
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Central Nervous System HIV Infection in “Less-Drug Regimen” Antiretroviral Therapy Simplification Strategies

Francesca Ferretti
1   Department of Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
,
Nicola Gianotti
1   Department of Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
,
Adriano Lazzarin
1   Department of Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
,
Paola Cinque
1   Department of Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
08 April 2014 (online)

Abstract

Less-drug regimens (LDR) refer to combinations of either two antiretroviral drugs or ritonavir-boosted protease inhibitor (PI) monotherapy. They may represent a simplification strategy in patients with persistently suppressed human immunodeficiency virus (HIV) viremia, with the main benefits of reducing drug-related toxicities and costs. Systemic virological efficacy of LDR is slightly lower as compared with combined antiretroviral therapy (cART), but patients with failure do not usually develop drug resistance and resuppress HIV replication after reintensification. A major concern of LDR is the lower efficacy in the virus reservoirs, especially in the central nervous system (CNS), where viral compartmentalization and independent evolution of infection may lead to CNS viral escape, often associated with neurologic symptoms. The authors reviewed studies of virological and functional CNS efficacy of LDR, particularly of boosted PI monotherapy regimens, for which more information is available. Symptomatic viral CSF escape was observed mainly in PI/r monotherapy patients with plasma failure and low nadir CD4+ cell counts, and resolved upon reintroduction of triple drug cART, whereas asymptomatic viral failure in CSF was not significantly more frequent in patients on PI/r monotherapy compared with patients on standard cART. In addition, there was no difference in functional outcomes between PI monotherapy and cART patients, irrespective of CSF viral escape. More data are needed on the CNS effect of dual ART regimens and, in general, on long-term efficacy of LDR. Simplification with LDR may be an attractive option in patients with suppressed viral load, if they are well selected and monitored for potential CNS complications.

 
  • References

  • 1 Mathis S, Khanlari B, Pulido F , et al. Effectiveness of protease inhibitor monotherapy versus combination antiretroviral maintenance therapy: a meta-analysis. PLoS ONE 2011; 6 (7) e22003
  • 2 McKinnon JE, Mellors JW, Swindells S. Simplification strategies to reduce antiretroviral drug exposure: progress and prospects. Antivir Ther 2009; 14 (1) 1-12
  • 3 Delfraissy JF, Flandre P, Delaugerre C , et al. Lopinavir/ritonavir monotherapy or plus zidovudine and lamivudine in antiretroviral-naive HIV-infected patients. AIDS 2008; 22 (3) 385-393
  • 4 Ghosn J, Flandre P, Cohen-Codar I , et al; MONARK Study Group. Long-term (96-week) follow-up of antiretroviral-naïve HIV-infected patients treated with first-line lopinavir/ritonavir monotherapy in the MONARK trial. HIV Med 2010; 11 (2) 137-142
  • 5 Pérez-Valero I, Arribas JR. Protease inhibitor monotherapy. Curr Opin Infect Dis 2011; 24 (1) 7-11
  • 6 Arribas JR, Delgado R, Arranz A , et al; OK04 Study Group. Lopinavir-ritonavir monotherapy versus lopinavir-ritonavir and 2 nucleosides for maintenance therapy of HIV: 96-week analysis. J Acquir Immune Defic Syndr 2009; 51 (2) 147-152
  • 7 Santos JR, Moltó J, Llibre JM , et al. Antiretroviral simplification with darunavir/ritonavir monotherapy in routine clinical practice: safety, effectiveness, and impact on lipid profile. PLoS ONE 2012; 7 (5) e37442
  • 8 Katlama C, Valantin MA, Algarte-Genin M , et al. Efficacy of darunavir/ritonavir maintenance monotherapy in patients with HIV-1 viral suppression: a randomized open-label, noninferiority trial, MONOI-ANRS 136. AIDS 2010; 24 (15) 2365-2374
  • 9 Valantin MA, Lambert-Niclot S, Flandre P , et al; MONOI ANRS 136 Study Group. Long-term efficacy of darunavir/ritonavir monotherapy in patients with HIV-1 viral suppression: week 96 results from the MONOI ANRS 136 study. J Antimicrob Chemother 2012; 67 (3) 691-695
  • 10 Arribas JR, Horban A, Gerstoft J , et al. The MONET trial: darunavir/ritonavir with or without nucleoside analogues, for patients with HIV RNA below 50 copies/ml. AIDS 2010; 24 (2) 223-230
  • 11 Clumeck N, Rieger A, Banhegyi D , et al. 96 week results from the MONET trial: a randomized comparison of darunavir/ritonavir with versus without nucleoside analogues, for patients with HIV RNA <50 copies/mL at baseline. J Antimicrob Chemother 2011; 66 (8) 1878-1885
  • 12 Vernazza P, Daneel S, Schiffer V , et al. The role of compartment penetration in PI-monotherapy: the Atazanavir-Ritonavir Monomaintenance (ATARITMO) Trial. AIDS 2007; 21 (10) 1309-1315
  • 13 Saumoy M, Tiraboschi J, Gutierrez M , et al. Viral response in stable patients switching to fosamprenavir/ritonavir monotherapy (the FONT Study). HIV Med 2011; 12 (7) 438-441
  • 14 Burgos J, Crespo M, Falcó V , et al. Simplification to dual antiretroviral therapy including a ritonavir-boosted protease inhibitor in treatment-experienced HIV-1-infected patients. J Antimicrob Chemother 2012; 67 (10) 2479-2486
  • 15 Calin R, Paris L, Simon A , et al. Dual raltegravir/etravirine combination in virologically suppressed HIV-1-infected patients on antiretroviral therapy. Antivir Ther 2012; 17 (8) 1601-1604
  • 16 Negredo E, Moltó J, Burger D , et al. Lopinavir/ritonavir plus nevirapine as a nucleoside-sparing approach in antiretroviral-experienced patients (NEKA study). J Acquir Immune Defic Syndr 2005; 38 (1) 47-52
  • 17 Okoli C, Siccardi M, Thomas-William S , et al. Once daily maraviroc 300 mg or 150 mg in combination with ritonavir-boosted darunavir 800/100 mg. J Antimicrob Chemother 2012; 67 (3) 671-674
  • 18 Cordery DV, Hesse K, Amin J, Cooper DA. Raltegravir and unboosted atazanavir dual therapy in virologically suppressed antiretroviral treatment-experienced HIV patients. Antivir Ther 2010; 15 (7) 1035-1038
  • 19 Di Giambenedetto S, Fabbiani M, Colafigli M , et al. Safety and feasibility of treatment simplification to atazanavir/ritonavir + lamivudine in HIV-infected patients on stable treatment with two nucleos(t)ide reverse transcriptase inhibitors + atazanavir/ritonavir with virological suppression (Atazanavir and Lamivudine for treatment Simplification, AtLaS pilot study). J Antimicrob Chemother 2013; 68 (6) 1364-1372
  • 20 Ofotokun I, Sheth AN, Sanford SE , et al. A switch in therapy to a reverse transcriptase inhibitor sparing combination of lopinavir/ritonavir and raltegravir in virologically suppressed HIV-infected patients: a pilot randomized trial to assess efficacy and safety profile: the KITE study. AIDS Res Hum Retroviruses 2012; 28 (10) 1196-1206
  • 21 Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. 2013. Available at: http://aidsinfo.nih.gov/guidelines . Accessed December 1, 2013
  • 22 Thompson MA, Aberg JA, Hoy JF , et al. Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel. JAMA 2012; 308 (4) 387-402
  • 23 European AIDS Clinical Society Guidelines. European AIDS Clinical Society (EACS), 2013. Available at: http://www.eacsociety.org . Accessed December 1, 2013
  • 24 HIV-AIDS Italian Expert Panel. Italian guidelines for the use of antiretroviral agents and diagnostic-clinical management of HIV-1 infected persons 2013. Italian Ministry of Health. Available at: http://www.salute.gov.it/imgs/C_17_pubblicazioni_2074_allegato.pdf . Accessed December 1, 2013
  • 25 D'Arminio Monforte A, Gianotti N, Cozzi-Lepri A, Pinnetti C , et al. Durability of lopinavir/ritonavir mono-therapy in individuals with viral load ≤50 copies/mL in the observational setting. Antivir Ther 2013; . [Epub ahead of print]
  • 26 Ritola K, Robertson K, Fiscus SA, Hall C, Swanstrom R. Increased human immunodeficiency virus type 1 (HIV-1) env compartmentalization in the presence of HIV-1-associated dementia. J Virol 2005; 79 (16) 10830-10834
  • 27 Strain MC, Letendre S, Pillai SK , et al. Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. J Virol 2005; 79 (3) 1772-1788
  • 28 Gorry PR, Taylor J, Holm GH , et al. Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J Virol 2002; 76 (12) 6277-6292
  • 29 Gorry PR, Bristol G, Zack JA , et al. Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 2001; 75 (21) 10073-10089
  • 30 Spudich S, Gisslen M, Hagberg L , et al. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. J Infect Dis 2011; 204 (5) 753-760
  • 31 Tambussi G, Gori A, Capiluppi B , et al. Neurological symptoms during primary human immunodeficiency virus (HIV) infection correlate with high levels of HIV RNA in cerebrospinal fluid. Clin Infect Dis 2000; 30 (6) 962-965
  • 32 Davis LE, Hjelle BL, Miller VE , et al. Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 1992; 42 (9) 1736-1739
  • 33 Scaravilli F, Bazille C, Gray F. Neuropathologic contributions to understanding AIDS and the central nervous system. Brain Pathol 2007; 17 (2) 197-208
  • 34 Spudich S, González-Scarano F. HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb Perspect Med 2012; 2 (6) a007120
  • 35 Giri MS, Nebozyhn M, Raymond A , et al. Circulating monocytes in HIV-1-infected viremic subjects exhibit an antiapoptosis gene signature and virus- and host-mediated apoptosis resistance. J Immunol 2009; 182 (7) 4459-4470
  • 36 Clements JE, Babas T, Mankowski JL , et al. The central nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J Infect Dis 2002; 186 (7) 905-913
  • 37 Zink MC, Brice AK, Kelly KM , et al. Simian immunodeficiency virus-infected macaques treated with highly active antiretroviral therapy have reduced central nervous system viral replication and inflammation but persistence of viral DNA. J Infect Dis 2010; 202 (1) 161-170
  • 38 Bestetti A, Presi S, Pierotti C , et al. Long-term virological effect of highly active antiretroviral therapy on cerebrospinal fluid and relationship with genotypic resistance. J Neurovirol 2004; 10 (Suppl. 01) 52-57
  • 39 Di Stefano M, Sabri F, Leitner T , et al. Reverse transcriptase sequence of paired isolates of cerebrospinal fluid and blood from patients infected with human immunodeficiency virus type 1 during zidovudine treatment. J Clin Microbiol 1995; 33 (2) 352-355
  • 40 Lanier ER, Sturge G, McClernon D , et al. HIV-1 reverse transcriptase sequence in plasma and cerebrospinal fluid of patients with AIDS dementia complex treated with Abacavir. AIDS 2001; 15 (6) 747-751
  • 41 Stingele K, Haas J, Zimmermann T , et al. Independent HIV replication in paired CSF and blood viral isolates during antiretroviral therapy. Neurology 2001; 56 (3) 355-361
  • 42 Venturi G, Catucci M, Romano L , et al. Antiretroviral resistance mutations in human immunodeficiency virus type 1 reverse transcriptase and protease from paired cerebrospinal fluid and plasma samples. J Infect Dis 2000; 181 (2) 740-745
  • 43 Canestri A, Lescure FX, Jaureguiberry S , et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis 2010; 50 (5) 773-778
  • 44 Peluso MJ, Ferretti F, Peterson J , et al. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS 2012; 26 (14) 1765-1774
  • 45 Edén A, Fuchs D, Hagberg L , et al. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis 2010; 202 (12) 1819-1825
  • 46 Gutmann C, Cusini A, Günthard HF , et al; Swiss HIV Cohort Study (SHCS). Randomized controlled study demonstrating failure of LPV/r monotherapy in HIV: the role of compartment and CD4-nadir. AIDS 2010; 24 (15) 2347-2354
  • 47 Spudich S, Lollo N, Liegler T, Deeks SG, Price RW. Treatment benefit on cerebrospinal fluid HIV-1 levels in the setting of systemic virological suppression and failure. J Infect Dis 2006; 194 (12) 1686-1696
  • 48 Aquaro S, Svicher V, Schols D , et al. Mechanisms underlying activity of antiretroviral drugs in HIV-1-infected macrophages: new therapeutic strategies. J Leukoc Biol 2006; 80 (5) 1103-1110
  • 49 Hagberg L, Gisslen M, Norkrans G, Svennerholm B. Kinetics of HIV-1 in cerebrospinal fluid and serum after zidovudine treatment. J Neuro-Aids 1999; 2 (2) 29-35
  • 50 Gisolf EH, Enting RH, Jurriaans S , et al. Cerebrospinal fluid HIV-1 RNA during treatment with ritonavir/saquinavir or ritonavir/saquinavir/stavudine. AIDS 2000; 14 (11) 1583-1589
  • 51 Foudraine NA, Hoetelmans RM, Lange JM , et al. Cerebrospinal-fluid HIV-1 RNA and drug concentrations after treatment with lamivudine plus zidovudine or stavudine. Lancet 1998; 351 (9115) 1547-1551
  • 52 Strazielle N, Ghersi-Egea JF. Factors affecting delivery of antiviral drugs to the brain. Rev Med Virol 2005; 15 (2) 105-133
  • 53 Letendre S, Marquie-Beck J, Capparelli E , et al; CHARTER Group. Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 2008; 65 (1) 65-70
  • 54 van Praag RM, Weverling GJ, Portegies P , et al. Enhanced penetration of indinavir in cerebrospinal fluid and semen after the addition of low-dose ritonavir. AIDS 2000; 14 (9) 1187-1194
  • 55 Haas DW, Johnson B, Nicotera J , et al. Effects of ritonavir on indinavir pharmacokinetics in cerebrospinal fluid and plasma. Antimicrob Agents Chemother 2003; 47 (7) 2131-2137
  • 56 Isaac A, Taylor S, Cane P , et al. Lopinavir/ritonavir combined with twice-daily 400 mg indinavir: pharmacokinetics and pharmacodynamics in blood, CSF and semen. J Antimicrob Chemother 2004; 54 (2) 498-502
  • 57 Yilmaz A, Ståhle L, Hagberg L, Svennerholm B, Fuchs D, Gisslén M. Cerebrospinal fluid and plasma HIV-1 RNA levels and lopinavir concentrations following lopinavir/ritonavir regimen. Scand J Infect Dis 2004; 36 (11–12) 823-828
  • 58 Cusini A, Vernazza PL, Yerly S , et al; Swiss HIV Cohort Study. Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. J Acquir Immune Defic Syndr 2013; 62 (1) 28-35
  • 59 Capparelli EV, Holland D, Okamoto C , et al; HNRC Group. Lopinavir concentrations in cerebrospinal fluid exceed the 50% inhibitory concentration for HIV. AIDS 2005; 19 (9) 949-952
  • 60 DiCenzo R, DiFrancesco R, Cruttenden K, Donnelly J, Schifitto G. Lopinavir cerebrospinal fluid steady-state trough concentrations in HIV-infected adults. Ann Pharmacother 2009; 43 (12) 1972-1977
  • 61 Yilmaz A, Izadkhashti A, Price RW , et al. Darunavir concentrations in cerebrospinal fluid and blood in HIV-1-infected individuals. AIDS Res Hum Retroviruses 2009; 25 (4) 457-461
  • 62 Croteau D, Rossi SS, Best BM , et al; CHARTER Group. Darunavir is predominantly unbound to protein in cerebrospinal fluid and concentrations exceed the wild-type HIV-1 median 90% inhibitory concentration. J Antimicrob Chemother 2013; 68 (3) 684-689
  • 63 Calcagno A, Yilmaz A, Cusato J , et al. Determinants of darunavir cerebrospinal fluid concentrations: impact of once-daily dosing and pharmacogenetics. AIDS 2012; 26 (12) 1529-1533
  • 64 Best BM, Letendre SL, Brigid E , et al; CHARTER Group. Low atazanavir concentrations in cerebrospinal fluid. AIDS 2009; 23 (1) 83-87
  • 65 Croteau D, Letendre S, Best BM , et al; CHARTER Group. Therapeutic amprenavir concentrations in cerebrospinal fluid. Antimicrob Agents Chemother 2012; 56 (4) 1985-1989
  • 66 Gisslén M, Fuchs D, Hagberg L, Svennerholm B, Zetterberg H. Cerebrospinal fluid viral breakthrough in two HIV-infected subjects on darunavir/ritonavir monotherapy. Scand J Infect Dis 2012; 44 (12) 997-1000
  • 67 de Truchis P, Mathez D, Abe E , et al. Cerebrospinal fluid HIV-1 virological escape with lymphocytic meningitis under lopinavir/ritonavir monotherapy. AIDS 2010; 24 (8) 1235-1236
  • 68 Pasquet A, Ajana F, Melliez H, Giurca C, Poissy J, Yazdanpanah Y. Central nervous system HIV replication and HIV-related pachymeningitis in a patient on protease inhibitor monotherapy despite an undetectable plasma viral load. AIDS 2012; 26 (13) 1726-1728
  • 69 Santos JR, Muñoz-Moreno JA, Moltó J , et al. Virological efficacy in cerebrospinal fluid and neurocognitive status in patients with long-term monotherapy based on lopinavir/ritonavir: an exploratory study. PLoS ONE 2013; 8 (7) e70201
  • 70 Paton NI, Meynard JL, Pulido F, Arenas-Pinto A, Girard PM, Arribas J. Inappropriate claim of 'failure of ritonavir-boosted lopinavir monotherapy in HIV' in the Monotherapy Switzerland/Thailand (MOST) trial. AIDS 2011; 25 (3) 393-394
  • 71 Worthington MG, Ross JJ. Aseptic meningitis and acute HIV syndrome after interruption of antiretroviral therapy: implications for structured treatment interruptions. AIDS 2003; 17 (14) 2145-2146
  • 72 Knysz B, Gasiorowski J, Czarnecki M, Gladysz A. Viral rebound syndrome in two HIV-1-positive patients after structured treatment interruption. Viral Immunol 2005; 18 (3) 579-581
  • 73 Letendre SL, Brande G, Hermes A , et al. Lopinavir with ritonavir reduces the HIV RNA level in cerebrospinal fluid. Clin Infect Dis 2007; 45 (11) 1511-1517
  • 74 Casado JL, de la Calle C, del Palacio M, Perez-Elías MJ, Moreno A, Moreno S. Short communication: lamivudine plus a boosted-protease inhibitor as simplification strategy in HIV-infected patients: proof of concept. AIDS Res Hum Retroviruses 2013; 29 (3) 588-591
  • 75 Bunupuradah T, Chetchotisakd P, Jirajariyavej S , et al; HIV STAR Study Group. Neurocognitive impairment in patients randomized to second-line lopinavir/ritonavir-based antiretroviral therapy vs. lopinavir/ritonavir monotherapy. J Neurovirol 2012; 18 (6) 479-487
  • 76 Robertson KR, Su Z, Margolis DM , et al; A5170 Study Team. Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology 2010; 74 (16) 1260-1266