Planta Med 2014; 80(08/09): 676-681
DOI: 10.1055/s-0034-1368585
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

In Vitro Antiplasmodial Activity of Benzophenones and Xanthones from Edible Fruits of Garcinia Species

James T. Lyles
1   Lehman College and The Graduate Center, City University of New York, New York, NY, USA
2   Present address: Center for the Study of Human Health, Emory University, Atlanta, GA, USA
,
Adam Negrin
1   Lehman College and The Graduate Center, City University of New York, New York, NY, USA
,
Shabana I. Khan
3   National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, USA
4   Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS, USA
,
Kan He
5   Present address: Herbalife International, Torrance, CA, USA
,
Edward J. Kennelly
1   Lehman College and The Graduate Center, City University of New York, New York, NY, USA
› Author Affiliations
Further Information

Publication History

received 12 May 2014
revised 12 May 2014

accepted 14 May 2014

Publication Date:
25 June 2014 (online)

Abstract

Species of Garcinia have been used to combat malaria in traditional African and Asian medicines, including Ayurveda. In the current study, we have identified antiplasmodial benzophenone and xanthone compounds from edible Garcinia species by testing for in vitro inhibitory activity against Plasmodium falciparum. Whole fruits of Garcinia xanthochymus, G. mangostana, G. spicata, and G. livingstonei were extracted and tested for antiplasmodial activity. Garcinia xanthochymus was subjected to bioactivity-guided fractionation to identify active partitions. Purified benzophenones (19) and xanthones (1018) were then screened in the plasmodial lactate dehydrogenase assay and tested for cytotoxicity against mammalian (Vero) cells. The benzophenones guttiferone E (4), isoxanthochymol (5), and guttiferone H (6), isolated from G. xanthochymus, and the xanthones α-mangostin (15), β-mangostin (16), and 3-isomangostin (17), known from G. mangostana, showed antiplasmodial activity with IC50 values in the range of 4.71–11.40 µM. Artemisinin and chloroquine were used as positive controls and exhibited IC50 values in the range of 0.01–0.24 µM. The identification of antiplasmodial benzophenone and xanthone compounds from G. xanthochymus and G. mangostana provides evidence for the antiplasmodial activity of Garcinia species and warrants further investigation of these fruits as dietary sources of chemopreventive compounds.

Supporting Information

 
  • References

  • 1 Sweeney PW. Phylogeny and floral diversity in the genus Garcinia (Clusiaceae) and relatives. Int J Plant Sci 2008; 169: 1288-1303
  • 2 Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, Pérez-Rojas JM. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 2008; 46: 3227-3239
  • 3 Hemshekhar M, Sunitha K, Santhosh MS, Devaraja S, Kemparaju K, Vishwanath BS, Niranjana SR, Girish KS. An overview on genus Garcinia: phytochemical and therapeutical aspects. Phytochem Rev 2011; 10: 325-351
  • 4 Kayembe JS, Taba KM, Ntumba K, Tshiongo MTC, Kazadi TK. In vitro anti-malarial activity of 20 quinones isolated from four plants used by traditional healers in the Democratic Republic of Congo. J Med Plant Res 2010; 41: 991-994
  • 5 Subeki S. Potency of the Indonesian medicinal plants as antimalarial drugs. Jurnal Teknologi Industri Hasil Pertanian 2012; 13: 25-30
  • 6 Tona L, Cimanga RC, Mesia K, Musuamba CT, De Bruyne T, Apers S, Hernans N, Van Miert S, Pieters L, Totté J, Vlietinck AJ. In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. J Ethnopharmacol 2004; 93: 27-32
  • 7 Peres V, Nagem TJ, de Oliveira FF. Tetraoxygenated naturally occurring xanthones. Phytochemistry 2000; 55: 683-710
  • 8 Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M. Garcinia mangostana L.: a phytochemical and pharmacological review. Phytother Res 2009; 23: 1047-1065
  • 9 Abe F, Nagafuji S, Okabe H, Higo H, Akahane H. Trypanocidal constituents in plants 2. Xanthones from the stem bark of Garcinia subelliptica . Biol Pharm Bull 2003; 26: 1730-1733
  • 10 Kelly JX, Ignatushchenko MV, Bouwer HG, Peyton DH, Hinrichs DJ, Winter RW, Riscoe M. Antileishmanial drug development: exploitation of parasite heme dependency. Mol Biochem Parasitol 2003; 126: 43-49
  • 11 Elfita E, Muharni M, Latief M, Darwati D, Widiyantoro A, Supriyatna S, Bahti HH, Dachriyanus D, Cos P, Maes L, Foubert K, Apers S, Pieters L. Antiplasmodial and other constituents from four Indonesian Garcinia spp. Phytochemistry 2009; 70: 907-912
  • 12 El-Seedi HR, El-Barbary MA, El-Ghorab DMH, Bohlin L, Borg-Karlson AK, Göransson U, Verpoorte R. Recent insights into the biosynthesis and biological activities of natural xanthones. Curr Med Chem 2010; 17: 854-901
  • 13 Mahabusarakam W, Kuaha K, Wilairat P, Taylor WC. Prenylated xanthones as potential antiplasmodial substances. Planta Med 2006; 72: 912-916
  • 14 Mbwambo ZH, Kapingu MC, Moshi MJ, Machumi F, Apers S, Cos P, Ferreira D, Marais JPL, Berghe DV, Maes L, Vlietinck A, Pieters L. Antiparasitic activity of some xanthones and biflavonoids from the root bark of Garcinia livingstonei . J Nat Prod 2006; 69: 369-372
  • 15 Acuña UM, Jancovski N, Kennelly EJ. Polyisoprenylated benzophenones from Clusiaceae: Potential drugs and lead compounds. Curr Top Med Chem 2009; 9: 1560-1580
  • 16 Baggett S, Mazzola E, Kennelly EJ. The Benzophenones: Isolation, structural elucidation and biological activities. Stud Nat Prod Chem 2005; 32: 721-771
  • 17 Kumar S, Sharma S, Chattopadhyay SK. The potential health benefit of polyisoprenylated benzophenones from Garcinia and related genera: ethnobotanical and therapeutic importance. Fitoterapia 2013; 89: 86-125
  • 18 Ngouela S, Lenta BN, Noungoue DT, Ngoupayo J, Boyom FF, Tsamo E, Gut J, Rosenthal PJ, Connolly JD. Anti-plasmodial and antioxidant activities of constituents of the seed shells of Symphonia globulifera Linn f. Phytochemistry 2006; 67: 302-306
  • 19 Kohring K, Wiesner J, Altenkämper M, Sakowski J, Silber K, Hillebrecht A, Haebel P, Dahse H-M, Ortmann R, Jomaa H, Klebe G, Schlitzer M. Development of benzophenone–based farnesyltransferase inhibitors as novel antimalarials. ChemMedChem 2008; 3: 1217-1231
  • 20 Lannang AM, Louh GN, Lontsi D, Specht S, Sarite SR, Flörke U, Hussain H, Hoerauf A, Krohn K. Antimalarial compounds from the root bark of Garcinia polyantha Olv. J Antibiot (Tokyo) 2008; 61: 518-523
  • 21 Zelefack F, Guilet D, Fabre N, Bayet C, Chevalley S, Ngouela S, Lenta BN, Valentin A, Tsamo E, Dijoux-Franca M-G. Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea . J Nat Prod 2009; 72: 954-957
  • 22 Laphookhieo S, Syers JK, Kiattansakul R, Chantrapromma K. Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense . Chem Pharm Bull (Tokyo) 2006; 54: 745-747
  • 23 Lenta BN, Kamdem LM, Ngouela S, Tantangmo F, Devkota KP, Boyom FF, Rosenthal PJ, Tsamo E. Antiplasmodial constituents from the fruit pericarp of Pentadesma butyracea . Planta Med 2011; 77: 377-379
  • 24 Kelly JX, Winter R, Riscoe M, Peyton DH. A spectroscopic investigation of the binding interactions between 4,5-dihydroxyanthone and heme. J Inorg Biochem 2001; 86: 617-625
  • 25 Winter RW, Ignatushchenko M, Ogundahunsi OAT, Cornell KA, Oduola AMJ, Hinrichs DJ, Riscoe MK. Potentiation of an antimalarial oxidant drug. Antimicrob Agents Chemother 1997; 41: 1449-1454
  • 26 Kelly JX, Winter R, Peyton DH, Hinrichs DJ, Riscoe M. Optimization of xanthones for antimalarial activity: the 3,6-bis-ω-diethylaminoalkoxyxanthone series. Antimicrob Agents Chemother 2002; 46: 144-150
  • 27 Portela C, Afonso CMM, Pinto MMM, Ramos MJ. Definition of an electronic profile of compounds with inhibitory activity against hematin aggregation in malaria parasite. Bioorg Med Chem 2004; 12: 3313-3321
  • 28 Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U. Antimalarial drugs inhibiting hemozoin (β-hematin) formation: a mechanistic update. Life Sci 2007; 80: 813-828
  • 29 Egan TJ, Ross DC, Adams PA. The mechanism of action of quinolines and related anti-malarial drugs. S Afr J Sci 1996; 92: 11-14
  • 30 Paitayatat S, Tarnchompoo B, Thebtaranonth Y, Yuthavong Y. Correlation of antimalarial activity of artemisinin derivatives with binding affinity with ferroprotoporphyrin IX. J Med Chem 1997; 40: 633-638
  • 31 Nallan L, Bauer KD, Bendale P, Rivas K, Yokoyama K, Hornéy CP, Pendyala PR, Floyd D, Lombardo LJ, Williams DK, Hamilton A, Sebti S, Windsor WT, Weber PC, Buckner FS, Chakrabarti D, Gelb MH, Van Voorhis WC. Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. J Med Chem 2005; 48: 3704-3713
  • 32 Hancock JF. Ras proteins: Different signals from different locations. Nat Rev Mol Cell Biol 2003; 4: 373-385
  • 33 Liñares GEG, Rodriguez JB. Current status and progresses made in malaria chemotherapy. Curr Med Chem 2007; 14: 289-314
  • 34 Wiesner J, Kettler K, Sakowski J, Ortmann R, Katzin AM, Kimura EA, Silber K, Klebe G, Jomaa H, Schlitzer M. Farnesyltransferase inhibitors inhibit the growth of malaria parasites in vitro and in vivo . Angew Chem Int Ed Engl 2004; 43: 251-254
  • 35 Kondo M, Zhang L, Ji H, Kou Y, Ou B. Bioavailability and antioxidant effects of a xanthone-rich mangosteen (Garcinia mangostana) product in humans. J Agric Food Chem 2009; 57: 8788-8792
  • 36 Morgan LR, Rodgers AH, Fan D, Soike K, Ratterree M, Sartin BW, Harrison TJ. Comparative preclinical toxicology and pharmacology of 4,4′-dihydroxybenzophenone-2,4-dinitrophenylhydrazone (A-007) in vitro and in rodents and primates. In Vivo 1997; 11: 29-37
  • 37 Gonzalez H, Jacobson C-E, Wennberg A-M, Larkö O, Farbrot A. Solid-phase extraction and reverse-phase HPLC: Application to study the urinary excretion pattern of benzophenone-3 and its metabolite 2,4-dihydroxybenzophenone in human urine. Anal Chem Insights 2008; 3: 1-7
  • 38 Cunha-Rodrigues M, Portugal S, Prudêncio M, Gonçalves LA, Casalou C, Buger D, Sauerwein R, Haas W, Mota MM. Genistein-supplemented diet decreases malaria liver infection in mice and constitutes a potential prophylactic strategy. PLoS One 2008; 3: 1-11
  • 39 Baggett S, Protiva P, Mazzola EP, Yang H, Ressler ET, Basile MJ, Weinstein IB, Kennelly EJ. Bioactive benzophenones from Garcinia xanthochymus fruits. J Nat Prod 2005; 68: 354-360
  • 40 Yang H, Figueroa M, To S, Baggett S, Jiang B, Basile MJ, Weinstein IB, Kennelly EJ. Benzophenones and biflavonoids from Garcinia livingstonei fruits. J Agric Food Chem 2010; 58: 4749-4755
  • 41 Acuña UM, Figueroa M, Kavalier A, Jancovski N, Basile MJ, Kennelly EJ. Benzophenones and biflavonoids from Rheedia edulis . J Nat Prod 2010; 73: 1775-1779
  • 42 Kitalong C. Hepatoprotective and HCV-protease inhibitory activity of Palauan medicinal plants. [thesis]. Toyama, Japan: Toyama Medical and Pharmaceutical University; 2007
  • 43 Makler MT, Hinrichs DJ. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am J Trop Med Hyg 1993; 48: 205-210
  • 44 Mustafa J, Khan SI, Ma G, Walker LA, Khan IA. Synthesis and anticancer activities of fatty acid analogs of podophyllotoxin lipids. Lipids 2004; 39: 167-172