Planta Med 2014; 80(08/09): 655-661
DOI: 10.1055/s-0034-1368544
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Inhibitory Effects of β-Chamigrenal, Isolated from the Fruits of Schisandra chinensis, on Lipopolysaccharide-Induced Nitric Oxide and Prostaglandin E2 Production in RAW 264.7 Macrophages

Ji-Sun Shin
1   Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
5   Reactive Oxygen Species Medical Research Center, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
6   Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
,
Suran Ryu
1   Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
2   Department of Biomedical Science, College of Medical Science, Kyung Hee University, Seoul, Republic of Korea
,
Young-Wuk Cho
2   Department of Biomedical Science, College of Medical Science, Kyung Hee University, Seoul, Republic of Korea
5   Reactive Oxygen Species Medical Research Center, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
6   Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
,
Hyun Ji Kim
3   Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
,
Dae Sik Jang
4   Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
,
Kyung-Tae Lee
1   Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
4   Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
› Author Affiliations
Further Information

Publication History

received 02 December 2013
revised 09 April 2014

accepted 05 May 2014

Publication Date:
28 May 2014 (online)

Abstract

Much is known about the bioactive properties of lignans from the fruits of Schisandra chinensis. However, very little work has been done to determine the properties of sesquiterpenes in the fruits of S. chinensis. The aim of the present study was to investigate the anti-inflammatory potential of new sesquiterpenes (β-chamigrenal, β-chamigrenic acid, α-ylangenol, and α-ylangenyl acetate) isolated from the fruits of S. chinensis and to explore their effect on macrophages stimulated with lipopolysaccharide. Of these four sesquiterpenes, β-chamigrenal most significantly suppressed lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in RAW 264.7 macrophages (47.21 ± 4.54 % and 51.61 ± 3.95 % at 50 µM, respectively). Molecularly, the inhibitory activity of β-chamigrenal on nitric oxide production was mediated by suppressing inducible nitric oxide synthase activity but not its expression. In the prostaglandin E2 synthesis pathway, β-chamigrenal prevented the upregulation of inducible microsomal prostaglandin E synthase-1 expression after stimulation with lipopolysaccharide. Conversely, β-chamigrenal had no effect on the expression and enzyme activity of cyclooxygenase-2. In addition, the expression of early growth response factor-1, a key transcription factor of microsomal prostaglandin E synthase-1 expression, was inhibited by β-chamigrenal. These results may suggest a possible anti-inflammatory activity of β-chamigrenal which has to be proven in in vivo experiments.

Supporting Information

 
  • References

  • 1 Shin JS, Yun CH, Cho YW, Baek NI, Choi MS, Jeong TS, Chung HG, Lee KT. Indole-containing fractions of Brassica rapa inhibit inducible nitric oxide synthase and pro-inflammatory cytokine expression by inactivating nuclear factor-kappaB. J Med Food 2011; 14: 1527-1537
  • 2 Zhou L, Zhu DY. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 2009; 20: 223-230
  • 3 Kim JB, Han AR, Park EY, Kim JY, Cho W, Lee J, Seo EK, Lee KT. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol Pharm Bull 2007; 30: 2345-2351
  • 4 Kleinert H, Pautz A, Linker K, Schwarz PM. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 2004; 500: 255-266
  • 5 Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007; 15: 252-259
  • 6 Smith WL, Langenbach R. Why there are two cyclooxygenase isozymes. J Clin Invest 2001; 107: 1491-1495
  • 7 Mitchell JA, Evans TW. Cyclooxygenase-2 as a therapeutic target. Inflamm Res 1998; 47 (Suppl. 02) S88-S92
  • 8 Park JY, Pillinger MH, Abramson SB. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol 2006; 119: 229-240
  • 9 Murakami M, Kudo I. Prostaglandin E synthase: a novel drug target for inflammation and cancer. Curr Pharm Des 2006; 12: 943-954
  • 10 Samuelsson B, Morgenstern R, Jakobsson PJ. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 2007; 59: 207-224
  • 11 Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 2002; 193: 287-292
  • 12 Aicher WK, Heer AH, Trabandt A, Bridges jr. SL, Schroeder jr. HW, Stransky G, Gay RE, Eibel H, Peter HH, Siebenlist U. Overexpression of zinc-finger transcription factor Z-225/Egr-1 in synoviocytes from rheumatoid arthritis patients. J Immunol 1994; 152: 5940-5948
  • 13 Naraba H, Yokoyama C, Tago N, Murakami M, Kudo I, Fueki M, Oh-Ishi S, Tanabe T. Transcriptional regulation of the membrane-associated prostaglandin E2 synthase gene. Essential role of the transcription factor Egr-1. J Biol Chem 2002; 277: 28601-28608
  • 14 Subbaramaiah K, Yoshimatsu K, Scherl E, Das KM, Glazier KD, Golijanin D, Soslow RA, Tanabe T, Naraba H, Dannenberg AJ. Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem 2004; 279: 12647-12658
  • 15 Bensky D, Gamble A. Chinese herbal medicine materia medica. Washington: Eastland Press; 1986: 376-378
  • 16 Lu Y, Chen DF. Analysis of Schisandra chinensis and Schisandra sphenanthera . J Chromatogr A 2009; 1216: 1980-1990
  • 17 Ikeya Y, Taguchi H, Sasaki H, Nakajima K, Yosioka I. The constituents of Schizandra chinensis Baill. VI. Carbon-13 nuclear magnetic resonance spectroscopy of dibenzocyclooctadiene lignans. Chem Pharm Bull 1980; 28: 2414-2421
  • 18 Xue YB, Zhang YL, Yang JH, Du X, Pu JX, Zhao W, Li XN, Xiao WL, Sun HD. Nortriterpenoids and lignans from the fruit of Schisandra chinensis . Chem Pharm Bull (Tokyo) 2010; 58: 1606-1611
  • 19 Panossian A, Wikman G. Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine. J Ethnopharmacol 2008; 118: 183-212
  • 20 Hancke JL, Burgos RA, Ahumada F. Schisandra chinensis (Turcz.) Baill. Fitoterapia 1999; 70: 451-471
  • 21 Caivano M, Rodriguez C, Cohen P, Alemany S. 15-Deoxy-Delta12, 14-prostaglandin J2 regulates endogenous Cot MAPK kinase kinase 1 activity induced by lipopolysaccharide. J Biol Chem 2003; 278: 52124-52130
  • 22 Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13: 453-461
  • 23 Duffield JS. The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 2003; 104: 27-38
  • 24 Hemmrich K, Kroncke KD, Suschek CV, Kolb-Bachofen V. What sense lies in antisense inhibition of inducible nitric oxide synthase expression?. Nitric Oxide 2005; 12: 183-199
  • 25 Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J 1994; 298 (Pt. 2) 249-258
  • 26 Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 2004; 75: 639-653
  • 27 Hausel P, Latado H, Courjault-Gautier F, Felley-Bosco E. Src-mediated phosphorylation regulates subcellular distribution and activity of human inducible nitric oxide synthase. Oncogene 2006; 25: 198-206
  • 28 Soskic SS, Dobutovic BD, Sudar EM, Obradovic MM, Nikolic DM, Djordjevic JD, Radak DJ, Mikhailidis DP, Isenovic ER. Regulation of inducible nitric oxide synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure. Open Cardiovasc Med J 2011; 5: 153-163
  • 29 Tanabe T, Tohnai N. Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat 2002; 68–69: 95-114
  • 30 Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity. Trends Immunol 2002; 23: 144-150
  • 31 Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280-288
  • 32 Coleman DL, Bartiss AH, Sukhatme VP, Liu J, Rupprecht HD. Lipopolysaccharide induces Egr-1 mRNA and protein in murine peritoneal macrophages. J Immunol 1992; 149: 3045-3051
  • 33 Moon Y, Lee M, Yang H. Involvement of early growth response gene 1 in the modulation of microsomal prostaglandin E synthase 1 by epigallocatechin gallate in A549 human pulmonary epithelial cells. Biochem Pharmacol 2007; 73: 125-135
  • 34 Clark P, Rowland SE, Denis D, Mathieu MC, Stocco R, Poirier H, Burch J, Han Y, Audoly L, Therien AG, Xu D. MF498 [N-{[4-(5,9-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbe nzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide], a selective E prostanoid receptor 4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis. J Pharmacol Exp Ther 2008; 325: 425-434
  • 35 Korotkova M, Jakobsson PJ. Characterization of microsomal prostaglandin e synthase 1 inhibitors. Basic Clin Pharmacol Toxicol 2014; 114: 64-69
  • 36 White DE, Stewart IC, Seashore-Ludlow BA, Grubbs RH, Stoltz BM. A general enantioselective route to the chamigrene natural product family. Tetrahedron 2010; 66: 4668-4686
  • 37 Ohta Y, Hirose Y. New sesquiterpenoids from Schisandra chinensis . Tetrahedron Lett 1968; 9: 2483-2485
  • 38 da Cunha FM, Frode TS, Mendes GL, Malheiros A, Cechinel Filho V, Yunes RA, Calixto JB. Additional evidence for the anti-inflammatory and anti-allergic properties of the sesquiterpene polygodial. Life Sci 2001; 70: 159-169
  • 39 Martin WJ, Herst PM, Chia EW, Harper JL. Sesquiterpene dialdehydes inhibit MSU crystal-induced superoxide production by infiltrating neutrophils in an in vivo model of gouty inflammation. Free Radic Biol Med 2009; 47: 616-621
  • 40 Merfort I. Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets 2011; 12: 1560-1573
  • 41 Lee IS, Jung KY, Oh SR, Kim DS, Kim JH, Lee JJ, Lee HK, Lee SH, Kim EH, Cheong C. Platelet-activating factor antagonistic activity and(13)C NMR assignment of pregomisin and chamigrenal from Schisandra chinensis . Arch Pharm Res 1997; 20: 633-636
  • 42 Kuo YH, Lin YT. Two new sesquiterpenes 3β-hydroxycedrol and widdringtonia acid II-A co-crystal of β-chamigrenic acid and hinokiic acid. J Chin Chem Soc 1980; 27: 15-18
  • 43 Viera PC, Himejima M, Kubo I. Sesquiterpenoids from Brachylaena hutchinsii . J Nat Prod 1991; 54: 416-420
  • 44 Bohlmann F, Ludwig GW, Jakupovic J, King RM, Robinson H. New spirosequiterpene lactones, germacranolides, and eudesmanolides from Wunderlichia mirabilis . Liebigs Ann Chem 1984; 1984: 228-239
  • 45 Ryu S, Shin JS, Cho YW, Kim HK, Paik SH, Lee JH, Chi YH, Kim JH, Lee KT. Fimasartan, anti-hypertension drug, suppressed inducible nitric oxide synthase expressions via nuclear factor-kappa B and activator protein-1 inactivation. Biol Pharm Bull 2013; 36: 467-474
  • 46 Lee SJ, Shin JS, Choi HE, Lee KG, Cho YW, An HJ, Jang DS, Jeong JC, Kwon OK, Nam JH, Lee KT. Chloroform fraction of Solanum tuberosum L. cv Jayoung epidermis suppresses LPS-induced inflammatory responses in macrophages and DSS-induced colitis in mice. Food Chem Toxicol 2013; 63: 53-61