Planta Med 2014; 80(06): 437-451
DOI: 10.1055/s-0034-1368351
Georg Thieme Verlag KG Stuttgart · New York

Preclinical Evidence for the Pharmacological Actions of Naringin: A Review

Saurabh Bharti
Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
Neha Rani
Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
Bhaskar Krishnamurthy
Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
Dharamvir Singh Arya
Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
› Author Affiliations
Further Information

Publication History

received 12 August 2013
revised 10 February 2014

accepted 10 March 2014

Publication Date:
07 April 2014 (online)


Naringin, chemically 4′,5,7- trihydroxyflavanone-7-rhamnoglucoside, is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. It has been experimentally documented to possess numerous biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities. In vitro and in vivo studies have further established the usefulness of naringin in various preclinical models of atherosclerosis, cardiovascular disorders, diabetes mellitus, neurodegenerative disorders, osteoporosis, and rheumatological disorders. Apart from this, naringin has also exerted chemopreventive and anticancer attributes in various models of oral, breast, colon, liver, lung, and ovarian cancer. This wide spectrum of biological expediency has been documented to be a result of either the upregulation of various cell survival proteins or the inhibition of inflammatory processes, or a combination of both. Due to the scarcity of human studies on naringin, this review focuses on the various established activities of naringin in in vitro and in vivo preclinical models, and its potential therapeutic applications using the available knowledge in the literature. Additionally, it also encompasses the pharmacokinetic properties of naringin and its inhibition of CYP isoenzymes, and the subsequent drug interactions. Moreover, further clinical research is evidently needed to provide significant insights into the mechanisms underlying the effects of naringin in humans.

  • References

  • 1 Rangaswami S, Seshadri TR, Veeraraghaviah J. Constitution of naringin. The position of the sugar group. J Proc Ind Acad Sci 1939; 9: 328-332
  • 2 Sinclair WB. The grapefruit: its composition, physiology & products. Berkeley: UC ANR publications; 1972: 134
  • 3 Ho PC, Saville DJ, Coville PF, Wanwimolruk S. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products. Pharm Acta Helv 2000; 74: 379-385
  • 4 Hungria M, Johnston AW, Phillips DA. Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli . Mol Plant Microbe Interact 1992; 5: 199-203
  • 5 Wang H, Nair MG, Strasburg GM, Booren AM, Gray JI. Antioxidant polyphenols from tart cherries (Prunus cerasus). J Agric Food Chem 1999; 47: 840-844
  • 6 Sánchez-Rabaneda F, Jáuregui O, Casals I, Andrés-Lacueva C, Izquierdo-Pulido M, Lamuela-Raventós RM. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J Mass Spectrom 2003; 38: 35-42
  • 7 Exarchou V, Godejohann M, van Beek TA, Gerothanassis IP, Vervoort J. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano. Anal Chem 2003; 75: 6288-6294
  • 8 Minoggio M, Bramati L, Simonetti P, Gardana C, Iemoli L, Santangelo E, Mauri PL, Spigno P, Soressi GP, Pietta PG. Polyphenol pattern and antioxidant activity of different tomato lines and cultivars. Ann Nutr Metab 2003; 47: 64-69
  • 9 Rouseff RL, Martin SF, Youtsey CO. Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J Agric Food Chem 1987; 35: 1027-1030
  • 10 Asahina Y, Inubuse M. Über die Konstitution des Naringenins (II. Mitteilung über die Flavanon-Glucoside). Chemische Berichte 1928; 61: 1514
  • 11 Braverman JBS. Citrus products. Chemical composition and chemical technology. New York: Interscience Publishers; 1949: 424
  • 12 Tomasik P. Chemical and functional properties of food saccharides. Boca Raton: CRC Press; 2004: 389
  • 13 Wilcox LJ, Borradaile NM, Huff MW. Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovasc Drug Rev 1999; 17: 160-178
  • 14 Chanet A, Milenkovic D, Manach C, Mazur A, Morand C. Citrus flavanones: what is their role in cardiovascular protection?. J Agric Food Chem 2012; 60: 8809-8822
  • 15 Benavente-García O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 2008; 56: 6185-6205
  • 16 Liu M, Yang C, Zou W, Guan X, Zheng W, Lai L, Fang S, Cai S, Su W. Toxicokinetics of naringin, a putative antitussive, after 184-day repeated oral administration in rat. Environ Toxicol Pharmacol 2011; 31: 485-489
  • 17 Wang MJ, Chao PDL, Hou YC, Hsiu SL, Wen KC, Tsai SY. Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and muliple dose administration. J Food Drug Anal 2006; 14: 247-253
  • 18 Tsai YJ, Tsai TH. Mesenteric lymphatic absorption and the pharmacokinetics of naringin and naringenin in the rat. J Agric Food Chem 2012; 60: 12435-12442
  • 19 Fang T, Wang Y, Ma Y, Su W, Bai Y, Zhao P. A rapid LC/MS/MS quantitation assay for naringin and its two metabolites in rats plasma. J Pharm Biomed Anal 2006; 40: 454-459
  • 20 Felgines C, Texier O, Morand C, Manach C, Scalbert A, Régerat F, Rémésy C. Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol 2000; 279: G1148-G1154
  • 21 Hsiu SL, Huang TY, Hou YC, Chin DH, Chao PD. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci 2002; 70: 1481-1489
  • 22 Liu M, Zou W, Yang C, Peng W, Su W. Metabolism and excretion studies of oral administered naringin, a putative antitussive, in rats and dogs. Biopharm Drug Dispos 2012; 33: 123-134
  • 23 Mata-Bilbao Mde L, Andrés-Lacueva C, Roura E, Jáuregui O, Escribano E, Torre C, Lamuela-Raventós RM. Absorption and pharmacokinetics of grapefruit flavanones in beagles. Br J Nutr 2007; 98: 86-92
  • 24 Ishii K, Furuta T, Kasuya Y. Determination of naringin and naringenin in human urine by high-performance liquid chromatography utilizing solid-phase extraction. J Chromatogr B Biomed Sci Appl 1997; 704: 299-305
  • 25 Ameer B, Weintraub RA, Johnson JV, Yost RA, Rouseff RL. Flavanone absorption after naringin, hesperidin, and citrus administration. Clin Pharmacol Ther 1996; 60: 34-40
  • 26 Kanaze FI, Kokkalou E, Georgarakis M, Niopas I. A validated solid-phase extraction HPLC method for the simultaneous determination of the citrus flavanone aglycones hesperetin and naringenin in urine. J Pharm Biomed Anal 2004; 36: 175-181
  • 27 Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res 1998; 21: 17-23
  • 28 Griffiths LA, Smith GE. Metabolism of myricetin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro . Biochem J 1972; 130: 141-151
  • 29 Griffiths LA, Barrow A. Metabolism of flavonoid compounds in germ-free rats. Biochem J 1972; 130: 1161-1162
  • 30 Nikolic D, van Breemen RB. New metabolic pathways for flavanones catalyzed by rat liver microsomes. Drug Metab Dispos 2004; 32: 387-397
  • 31 Li X, Xiao H, Liang X, Shi D, Liu J. LC-MS/MS determination of naringin, hesperidin and neohesperidin in rat serum after orally administrating the decoction of Bulpleurum falcatum L. and Fractus aurantii . J Pharm Biomed Anal 2004; 27: 159-166
  • 32 Zou W, Yang C, Liu M, Su W. Tissue distribution study of naringin in rats by liquid chromatography-tandem mass spectrometry. Arzneimittelforschung 2012; 62: 181-186
  • 33 Tsai TH. Determination of naringin in rat blood, brain, liver, and bile using microdialysis and its interaction with cyclosporin a, a p-glycoprotein modulator. J Agric Food Chem 2002; 50: 6669-6674
  • 34 Fuhr U, Kummert AL. The fate of naringin in humans: a key to grapefruit juice-drug interactions?. Clin Pharmacol Ther 1995; 58: 365-373
  • 35 Shirasaka Y, Suzuki K, Shichiri M, Nakanishi T, Tamai I. Intestinal absorption of HMG-CoA reductase inhibitor pitavastatin mediated by organic anion transporting polypeptide and P-glycoprotein/multidrug resistance 1. Drug Metab Pharmacokinet 2011; 26: 171-179
  • 36 Yamakawa Y, Hamada A, Shuto T, Yuki M, Uchida T, Kai H, Kawaguchi T, Saito H. Pharmacokinetic impact of SLCO1A2 polymorphisms on imatinib disposition in patients with chronic myeloid leukemia. Clin Pharmacol Ther 2011; 90: 157-163
  • 37 Nishimuta H, Ohtani H, Tsujimoto M, Ogura K, Hiratsuka A, Sawada Y. Inhibitory effects of various beverages on human recombinant sulfotransferase isoforms SULT1A1 and SULT1A3. Biopharm Drug Dispos 2007; 28: 491-500
  • 38 Walle T, Eaton EA, Walle UK. Quercetin, a potent and specific inhibitor of the human P-form phenosulfotransferase. Biochem Pharmacol 1995; 50: 731-734
  • 39 Dahan A, Amidon GL. Grapefruit juice and its constituents augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein. Pharm Res 2009; 26: 883-892
  • 40 Yeum CH, Choi JS. Effect of naringin pretreatment on bioavailability of verapamil in rabbits. Arch Pharm Res 2006; 29: 102-107
  • 41 Lim SC, Choi JS. Effects of naringin on the pharmacokinetics of intravenous paclitaxel in rats. Biopharm Drug Dispos 2006; 27: 443-447
  • 42 Park HS, Oh JH, Lee JH, Lee YJ. Minor effects of the citrus flavonoids naringin, naringenin and quercetin, on the pharmacokinetics of doxorubicin in rats. Pharmazie 2011; 66: 424-429
  • 43 Ballard TL, Halaweish FT, Stevermer CL, Agrawal P, Vukovich MD. Naringin does not alter caffeine pharmacokinetics, energy expenditure, or cardiovascular haemodynamics in humans following caffeine consumption. Clin Exp Pharmacol Physiol 2006; 33: 310-314
  • 44 Ali MM, Agha FG, El-Sammad NM, Hassan SK. Modulation of anticancer drug-induced P-glycoprotein expression by naringin. Z Naturforsch C 2009; 64: 109-116
  • 45 Guengerich FP, Kim DH. In vitro inhibition of dihydropyridine oxidation and aflatoxin B1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogenesis 1990; 11: 2275-2279
  • 46 Chen YT, Zheng RL, Jia ZJ, Ju Y. Flavonoids as superoxide scavengers and antioxidants. Free Radic Biol Med 1990; 9: 19-21
  • 47 Russo A, Acquaviva R, Campisi A, Sorrenti V, Di Giacomo C, Virgata G, Barcellona ML, Vanella A. Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol Toxicol 2000; 16: 91-98
  • 48 Maridonneau-Parini IR, Braquet P, Garay RP. Heterogeneous effect of flavonoids on K+-loss and lipid peroxidation induced by oxygen free radicals in human red cells. Pharmacol Res Commun 1986; 18: 61-72
  • 49 Kumar MS, Unnikrishnan MK, Patra S, Murthy K, Srinivasan KK. Naringin and naringenin inhibit nitrite-induced methemoglobin formation. Pharmazie 2003; 58: 564-566
  • 50 Karaseva EI, Kurchenko VP, Metelitsa DI. Flavonoids: efficient protectors of glucose-6-phosphate dehydrogenase from ultrasonic cavitation-induced inactivation. Prikl Biokhim Mikrobiol 2007; 43: 158-168
  • 51 Zielińska-Przyjemska M, Ignatowicz E. Citrus fruit flavonoids influence on neutrophil apoptosis and oxidative metabolism. Phytother Res 2008; 22: 1557-1562
  • 52 Jagetia GC, Reddy TK, Venkatesha VA, Kedlaya R. Influence of naringin on ferric iron induced oxidative damage in vitro . Clin Chim Acta 2004; 347: 189-197
  • 53 Jagetia GC, Reddy TK. Alleviation of iron induced oxidative stress by the grape fruit flavanone naringin in vitro . Chem Biol Interact 2011; 190: 121-128
  • 54 Kim SW, Kim CE, Kim MH. Flavonoids inhibit high glucose-induced up-regulation of ICAM-1 via the p 38 MAPK pathway in human vein endothelial cells. Biochem Biophys Res Commun 2011; 415: 602-607
  • 55 Chen J, Guo R, Yan H, Tian L, You Q, Li S, Huang R, Wu K. Naringin Inhibits ROS-activated MAPK Pathway in High Glucose-induced Injuries in H9c2 Cardiac Cells. Basic Clin Pharmacol Toxicol 2014; 114: 293-304
  • 56 Lu YH, Su MY, Huang HY, Lin-Li. Yuan CG. Protective effects of the citrus flavanones to PC12 cells against cytotoxicity induced by hydrogen peroxide. Neurosci Lett 2010; 484: 6-11
  • 57 Gopinath K, Sudhandiran G. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience 2012; 227: 134-143
  • 58 Gopinath K, Prakash D, Sudhandiran G. Neuroprotective effect of naringin, a dietary flavonoid against 3-nitropropionic acid-induced neuronal apoptosis. Neurochem Int 2011; 59: 1066-1073
  • 59 Kanno S, Shouji A, Asou K, Ishikawa M. Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. J Pharmacol Sci 2003; 92: 166-170
  • 60 Kanno S, Shouji A, Hirata R, Asou K, Ishikawa M. Effects of naringin on cytosine arabinoside (Ara-C)-induced cytotoxicity and apoptosis in P388 cells. Life Sci 2004; 75: 353-365
  • 61 Yeh SL, Wang WY, Huang CH, Hu ML. Pro-oxidative effect of beta-carotene and the interaction with flavonoids on UVA-induced DNA strand breaks in mouse fibroblast C3H10 T1/2 cells. J Nutr Biochem 2005; 16: 729-735
  • 62 Benkovic V, Knezevic AH, Orsolic N, Basic I, Ramic S, Viculin T, Knezevic F, Kopjar N. Evaluation of radioprotective effects of propolis and its flavonoid constituents: in vitro study on human white blood cells. Phytother Res 2009; 23: 1159-1168
  • 63 Yilmaz D, Aydemir NC, Vatan O, Tüzün E, Bilaloglu R. Influence of naringin on cadmium-induced genomic damage in human lymphocytes in vitro . Toxicol Ind Health 2012; 28: 114-121
  • 64 Jagetia A, Jagetia GC, Jha S. Naringin, a grapefruit flavanone, protects V79 cells against the bleomycin-induced genotoxicity and decline in survival. J Appl Toxicol 2007; 27: 122-132
  • 65 Hori M, Kojima H, Nakata S, Konishi H, Kitagawa A, Kawai K. A search for the plant ingredients that protect cells from air pollutants and benz[a]pyrene phototoxicity. Drug Chem Toxicol 2007; 30: 105-116
  • 66 Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric 2010; 90: 1238-1244
  • 67 Pereira RM, Andrades NE, Paulino N, Sawaya AC, Eberlin MN, Marcucci MC, Favero GM, Novak EM, Bydlowski SP. Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules 2007; 12: 1352-1366
  • 68 Anh NT, Nishitani M, Harada S, Yamaguchi M, Kamei K. A Drosophila model for the screening of bioavailable NADPH oxidase inhibitors and antioxidants. Mol Cell Biochem 2011; 352: 91-98
  • 69 Bodas R, Prieto N, López-Campos O, Giráldez FJ, Andrés S. Naringin and vitamin E influence the oxidative stability and lipid profile of plasma in lambs fed fish oil. Res Vet Sci 2011; 91: 98-102
  • 70 Jeon SM, Bok SH, Jang MK, Kim YH, Nam KT, Jeong TS, Park YB, Choi MS. Comparison of antioxidant effects of naringin and probucol in cholesterol-fed rabbits. Clin Chim Acta 2002; 317: 181-190
  • 71 Jeon SM, Bok SH, Jang MK, Lee MK, Nam KT, Park YB, Rhee SJ, Choi MS. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci 2001; 69: 2855-2866
  • 72 Singh D, Chopra K. The effect of naringin, a bioflavonoid on ischemia-reperfusion induced renal injury in rats. Pharmacol Res 2004; 50: 187-193
  • 73 Akondi BR, Challa SR, Akula A. Protective effects of rutin and naringin in testicular ischemia-reperfusion induced oxidative stress in rats. J Reprod Infertil 2011; 12: 209-214
  • 74 Amudha K, Pari L. Beneficial role of naringin, a flavanoid on nickel induced nephrotoxicity in rats. Chem Biol Interact 2011; 193: 57-64
  • 75 Pari L, Amudha K. Hepatoprotective role of naringin on nickel-induced toxicity in male Wistar rats. Eur J Pharmacol 2011; 650: 364-370
  • 76 Singh D, Chander V, Chopra K. Protective effect of naringin, a bioflavonoid on ferric nitrilotriacetate-induced oxidative renal damage in rat kidney. Toxicology 2004; 201: 1-8
  • 77 Singh D, Chander V, Chopra K. Protective effect of naringin, a bioflavonoid on glycerol-induced acute renal failure in rat kidney. Toxicology 2004; 201: 143-151
  • 78 Cariño-Cortés R, Alvarez-González I, Martino-Roaro L, Madrigal-Bujaidar E. Effect of naringin on the DNA damage induced by daunorubicin in mouse hepatocytes and cardiocytes. Biol Pharm Bull 2010; 33: 697-701
  • 79 Attia SM. Abatement by naringin of lomefloxacin-induced genomic instability in mice. Mutagenesis 2008; 23: 515-521
  • 80 Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complications 2012; 26: 483-490
  • 81 Bakheet SA, Attia SM. Evaluation of chromosomal instability in diabetic rats treated with naringin. Oxid Med Cell Longev 2011; 2011: 365292
  • 82 Jagetia GC, Reddy TK. Modulation of radiation-induced alteration in the antioxidant status of mice by naringin. Life Sci 2005; 77: 780-794
  • 83 Jagetia GC, Venkatesha VA, Reddy TK. Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis 2003; 18: 337-343
  • 84 Orsolić N, Benković V, Horvat-Knezević A, Kopjar N, Kosalec I, Bakmaz M, Mihaljević Z, Bendelja K, Basić I. Assessment by survival analysis of the radioprotective properties of propolis and its polyphenolic compounds. Biol Pharm Bull 2007; 30: 946-951
  • 85 Kanno S, Shouji A, Tomizawa A, Hiura T, Osanai Y, Ujibe M, Obara Y, Nakahata N, Ishikawa M. Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages. Life Sci 2006; 78: 673-681
  • 86 Liu Y, Su WW, Wang S, Li PB. Naringin inhibits chemokine production in an LPS-induced RAW 264.7 macrophage cell line. Mol Med Report 2012; 6: 1343-1350
  • 87 Si-Si W, Liao L, Ling Z, Yun-Xia Y. Inhibition of TNF-α/IFN-γ induced RANTES expression in HaCaT cell by naringin. Pharm Biol 2011; 49: 810-814
  • 88 Santos ML, Toyama DO, Oliveira SC, Cotrim CA, Diz-Filho EB, Fagundes FH, Soares VC, Aparicio R, Toyama MH. Modulation of the pharmacological activities of secretory phospholipase A2 from Crotalus durissus cascavella induced by naringin. Molecules 2011; 16: 738-761
  • 89 Xiong Y, Wang GF, Zhang JY, Wu SY, Xu W, Zhang JJ, Wu SG, Rao JJ. Naringin inhibits monocyte adhesion to high glucose-induced human umbilical vein endothelial cells. Nan Fang Yi Ke Da Xue Xue Bao 2010; 30: 321-325
  • 90 Lee JH, Kim GH. Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J Food Sci 2010; 75: H212-H217
  • 91 Prota L, Santoro A, Bifulco M, Aquino RP, Mencherini T, Russo P. Leucine enhances aerosol performance of naringin dry powder and its activity on cystic fibrosis airway epithelial cells. Int J Pharm 2011; 412: 8-19
  • 92 Kawaguchi K, Kikuchi S, Hasegawa H, Maruyama H, Morita H, Kumazawa Y. Suppression of lipopolysaccharide-induced tumor necrosis factor-release and liver injury in mice by naringin. Eur J Pharmacol 1999; 368: 245-250
  • 93 Liu Y, Wu H, Nie YC, Chen JL, Su WW, Li PB. Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-κB pathway. Int Immunopharmacol 2011; 11: 1606-1612
  • 94 Shiratori K, Ohgami K, Ilieva I, Jin XH, Yoshida K, Kase S, Ohno S. The effects of naringin and naringenin on endotoxin-induced uveitis in rats. J Ocul Pharmacol Ther 2005; 21: 298-304
  • 95 Nie YC, Wu H, Li PB, Luo YL, Long K, Xie LM, Shen JG, Su WW. Anti-inflammatory effects of naringin in chronic pulmonary neutrophilic inflammation in cigarette smoke-exposed rats. J Med Food 2012; 15: 894-900
  • 96 Luo YL, Zhang CC, Li PB, Nie YC, Wu H, Shen JG, Su WW. Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke. Int Immunopharmacol 2012; 13: 301-307
  • 97 Luo YL, Li PB, Zhang CC, Zheng YF, Wang S, Nie YC, Zhang KJ, Su WW. Effects of four antitussives on airway neurogenic inflammation in a guinea pig model of chronic cough induced by cigarette smoke exposure. Inflamm Res 2013; 62: 1053-1061
  • 98 Jain M, Parmar HS. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm Res 2011; 60: 483-491
  • 99 Amaro MI, Rocha J, Vila-Real H, Eduardo-Figueira M, Mota-Filipe H, Sepodes B, Ribeiro MH. Anti-inflammatory activity of naringin and the biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res Int 2009; 42: 1010-1017
  • 100 Golechha M, Chaudhry U, Bhatia J, Saluja D, Arya DS. Naringin protects against kainic acid-induced status epilepticus in rats: evidence for an antioxidant, anti-inflammatory and neuroprotective intervention. Biol Pharm Bull 2011; 34: 360-365
  • 101 Naderi GA, Asgary S, Sarraf-Zadegan N, Shirvany H. Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol Cell Biochem 2003; 246: 193-196
  • 102 Balestrieri ML, Castaldo D, Balestrieri C, Quagliuolo L, Giovane A, Servillo L. Modulation by flavonoids of PAF and related phospholipids in endothelial cells during oxidative stress. J Lipid Res 2003; 44: 380-387
  • 103 Lee EJ, Moon GS, Choi WS, Kim WJ, Moon SK. Naringin-induced p 21WAF1-mediated G(1)-phase cell cycle arrest via activation of the Ras/Raf/ERK signaling pathway in vascular smooth muscle cells. Food Chem Toxicol 2008; 46: 3800-3807
  • 104 Lee EJ, Kim DI, Kim WJ, Moon SK. Naringin inhibits matrix metalloproteinase-9 expression and AKT phosphorylation in tumor necrosis factor-alpha-induced vascular smooth muscle cells. Mol Nutr Food Res 2009; 53: 1582-1591
  • 105 Shin YW, Bok SH, Jeong TS, Bae KH, Jeoung NH, Choi MS, Lee SH, Park YB. Hypocholesterolemic effect of naringin associated with hepatic cholesterol regulating enzyme changes in rats. Int J Vitam Nutr Res 1999; 69: 341-347
  • 106 Lee CH, Jeong TS, Choi YK, Hyun BH, Oh GT, Kim EH, Kim JR, Han JI, Bok SH. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun 2001; 284: 681-688
  • 107 Choe SC, Kim HS, Jeong TS, Bok SH, Park YB. Naringin has an antiatherogenic effect with the inhibition of intercellular adhesion molecule-1 in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 2001; 38: 947-955
  • 108 Jeon SM, Park YB, Choi MS. Antihypercholesterolemic property of naringin alters plasma and tissue lipids, cholesterol-regulating enzymes, fecal sterol and tissue morphology in rabbits. Clin Nutr 2004; 23: 1025-1034
  • 109 Kim HJ, Oh GT, Park YB, Lee MK, Seo HJ, Choi MS. Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Life Sci 2004; 74: 1621-1634
  • 110 Kim SY, Kim HJ, Lee MK, Jeon SM, Do GM, Kwon EY, Cho YY, Kim DJ, Jeong KS, Park YB, Ha TY, Choi MS. Naringin time-dependently lowers hepatic cholesterol biosynthesis and plasma cholesterol in rats fed high-fat and high-cholesterol diet. J Med Food 2006; 9: 582-586
  • 111 Chanet A, Milenkovic D, Deval C, Potier M, Constans J, Mazur A, Bennetau-Pelissero C, Morand C, Bérard AM. Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. J Nutr Biochem 2012; 23: 469-477
  • 112 Jung UJ, Kim HJ, Lee JS, Lee MK, Kim HO, Park EJ, Kim HK, Jeong TS, Choi MS. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr 2003; 22: 561-568
  • 113 Demonty I, Lin Y, Zebregs YE, Vermeer MA, van der Knaap HC, Jäkel M, Trautwein EA. The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately hypercholesterolemic men and women. J Nutr 2010; 140: 1615-1620
  • 114 Ajay M, Gilani AU, Mustafa MR. Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci 2003; 74: 603-612
  • 115 Saponara S, Testai L, Iozzi D, Martinotti E, Martelli A, Chericoni S, Sgaragli G, Fusi F, Calderone V. (±)-Naringenin as large conductance Ca2+-activated K+ (BKCa) channel opener in vascular smooth muscle cells. Br J Pharmacol 2006; 149: 1013-1021
  • 116 Yow TT, Pera E, Absalom N, Heblinski M, Johnston GA, Hanrahan JR, Chebib M. Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapin-Q. Br J Pharmacol 2011; 163: 1017-1033
  • 117 Huang H, Wu K, You Q, Huang R, Li S, Wu K. Naringin inhibits high glucose-induced cardiomyocyte apoptosis by attenuating mitochondrial dysfunction and modulating the activation of the p38 signaling pathway. Int J Mol Med 2013; 32: 396-402
  • 118 Ikemura M, Sasaki Y, Giddings JC, Yamamoto J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother Res 2012; 26: 1272-1277
  • 119 Rajadurai M, Prince PS. Preventive effect of naringin on cardiac mitochondrial enzymes during isoproterenol-induced myocardial infarction in rats: a transmission electron microscopic study. J Biochem Mol Toxicol 2007; 21: 354-361
  • 120 Rajadurai M, Prince PS. Preventive effect of naringin on isoproterenol-induced cardiotoxicity in Wistar rats: an in vivo and in vitro study. Toxicology 2007; 232: 216-225
  • 121 Rajadurai M, Prince PS. Preventive effect of naringin on cardiac markers, electrocardiographic patterns and lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats. Toxicology 2007; 230: 178-188
  • 122 Rajadurai M, Prince PS. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology 2006; 228: 259-268
  • 123 Rani N, Bharti S, Manchanda M, Nag TC, Ray R, Chauhan SS, Kumari S, Arya DS. Regulation of heat shock proteins 27 and 70, p-Akt/p-eNOS and MAPKs by naringin dampens myocardial injury and dysfunction in vivo after ischemia/reperfusion. PLoS One 2013; 8: e82577
  • 124 Parmar HS, Jain P, Chauhan DS, Bhinchar MK, Munjal V, Yusuf M, Choube K, Tawani A, Tiwari V, Manivannan E, Kumar A. DPP-IV inhibitory potential of naringin: an in silico, in vitro and in vivo study. Diabetes Res Clin Pract 2012; 97: 105-111
  • 125 Purushotham A, Tian M, Belury MA. The citrus fruit flavonoid naringenin suppresses hepatic glucose production from Fao hepatoma cells. Mol Nutr Food Res 2009; 53: 300-307
  • 126 Jung UJ, Lee MK, Jeong KS, Choi MS. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 2004; 134: 2499-2503
  • 127 Jung UJ, Lee MK, Park YB, Kang MA, Choi MS. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol 2006; 38: 1134-1145
  • 128 Leray V, Freuchet B, Le Blocʼh J, Jeusette I, Torre C, Nguyen P. Effect of citrus polyphenol- and curcumin-supplemented diet on inflammatory state in obese cats. Br J Nutr 2011; 106: S198-S201
  • 129 Pu P, Gao DM, Mohamed S, Chen J, Zhang J, Zhou XY, Zhou NJ, Xie J, Jiang H. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Arch Biochem Biophys 2012; 518: 61-70
  • 130 Xulu S, Oroma Owira PM. Naringin ameliorates atherogenic dyslipidemia but not hyperglycemia in rats with type 1 diabetes. J Cardiovasc Pharmacol 2012; 59: 133-141
  • 131 Alam MA, Kauter K, Brown L. Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats. Nutrients 2013; 5: 637-650
  • 132 Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia 2012; 83: 650-659
  • 133 Goodarzi MT, Zal F, Malakooti M, Safari MR, Sadeghian S. Inhibitory activity of flavonoids on the lens aldose reductase of healthy and diabetic rats. Acta Medica Iranica 2006; 44: 41-45
  • 134 Sharma AK, Bharti S, Ojha S, Bhatia J, Kumar N, Ray R, Kumari S, Arya DS. Up-regulation of PPARγ, heat shock protein-27 and -72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br J Nutr 2011; 106: 1713-1723
  • 135 Kim HJ, Song JY, Park HJ, Park HK, Yun DH, Chung JH. Naringin protects against rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Korean J Physiol Pharmacol 2009; 13: 281-285
  • 136 Wang D, Gao K, Li X, Shen X, Zhang X, Ma C, Qin C, Zhang L. Long-term naringin consumption reverses a glucose uptake defect and improves cognitive deficits in a mouse model of Alzheimerʼs disease. Pharmacol Biochem Behav 2012; 102: 13-20
  • 137 Maratha SR, Mahadevan N. Memory enhancing activity of naringin in unstressed and stressed mice: possible cholinergic and nitriergic modulation. Neurochem Res 2012; 37: 2206-2212
  • 138 Gaur V, Aggarwal A, Kumar A. Protective effect of naringin against ischemic reperfusion cerebral injury: possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol 2009; 616: 147-154
  • 139 Rong W, Wang J, Liu X, Jiang L, Wei F, Hu X, Han X, Liu Z. Naringin treatment improves functional recovery by increasing BDNF and VEGF expression, inhibiting neuronal apoptosis after spinal cord injury. Neurochem Res 2012; 37: 1615-1623
  • 140 Kumar A, Dogra S, Prakash A. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats. J Med Food 2010; 13: 976-984
  • 141 Kumar A, Prakash A, Dogra S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem Toxicol 2010; 48: 626-632
  • 142 Kumar P, Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntingtonʼs like symptoms in rats: possible role of nitric oxide. Behav Brain Res 2010; 206: 38-46
  • 143 Aggarwal A, Gaur V, Kumar A. Nitric oxide mechanism in the protective effect of naringin against post-stroke depression (PSD) in mice. Life Sci 2010; 86: 928-935
  • 144 Fernandez SP, Nguyen M, Yow TT, Chu C, Johnston GA, Hanrahan JR, Chebib M. The flavonoid glycosides, myricitrin, gossypin and naringin exert anxiolytic action in mice. Neurochem Res 2009; 34: 1867-1875
  • 145 Viswanatha GL, Shylaja H, Rao KS, Ashwini Y, Kumar VR, Mohan CG, Sunil VG, Kumar MV, Rajesh S. Amelioration of immobilization stress-induced biochemical and behavioral alterations and mitochondrial dysfunction by naringin in mice: possible mechanism of nitric oxide modulation. Zhong Xi Yi Jie He Xue Bao 2011; 9: 1254-1263
  • 146 Vij G, Gupta A, Chopra K. Modulation of antigen-induced chronic fatigue in mouse model of water immersion stress by naringin, a polyphenolic antioxidant. Fundam Clin Pharmacol 2009; 23: 331-337
  • 147 Lake BG, Beamand JA, Tredger JM, Barton PT, Renwick AB, Price RJ. Inhibition of xenobiotic-induced genotoxicity in cultured precision-cut human and rat liver slices. Mutat Res 1999; 440: 91-100
  • 148 Blankson H, Grotterød EM, Seglen PO. Prevention of toxin-induced cytoskeletal disruption and apoptotic liver cell death by the grapefruit flavonoid, naringin. Cell Death Differ 2000; 7: 739-746
  • 149 Berven G, Saetre F, Halvorsen K, Seglen PO. Effects of the diarrhetic shellfish toxin, okadaic acid, on cytoskeletal elements, viability and functionality of rat liver and intestinal cells. Toxicon 2001; 39: 349-362
  • 150 Gordon PB, Holen I, Seglen PO. Protection by naringin and some other flavonoids of hepatocytic autophagy and endocytosis against inhibition by okadaic acid. J Biol Chem 1995; 270: 5830-5838
  • 151 Møller MT, Samari HR, Fengsrud M, Strømhaug PE, øStvold AC, Seglen PO. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes. Biochem J 2003; 373: 505-513
  • 152 Larsen AK, Møller MT, Blankson H, Samari HR, Holden L, Seglen PO. Naringin-sensitive phosphorylation of plectin, a cytoskeletal cross-linking protein, in isolated rat hepatocytes. J Biol Chem 2002; 277: 34826-34835
  • 153 Seo HJ, Jeong KS, Lee MK, Park YB, Jung UJ, Kim HJ, Choi MS. Role of naringin supplement in regulation of lipid and ethanol metabolism in rats. Life Sci 2003; 73: 933-946
  • 154 Oliva J, French BA, Li J, Bardag-Gorce F, Fu P, French SW. Sirt1 is involved in energy metabolism: the role of chronic ethanol feeding and resveratrol. Exp Mol Pathol 2008; 85: 155-159
  • 155 So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 1996; 26: 167-181
  • 156 Froufe HJ, Abreu RM, Ferreira IC. Using molecular docking to investigate the anti-breast cancer activity of low molecular weight compounds present on wild mushrooms. SAR QSAR Environ Res 2011; 22: 315-328
  • 157 Guo D, Wang J, Wang X, Luo H, Zhang H, Cao D, Chen L, Huang N. Double directional adjusting estrogenic effect of naringin from Rhizoma drynariae (Gusuibu). J Ethnopharmacol 2011; 138: 451-457
  • 158 Schindler R, Mentlein R. Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. J Nutr 2006; 136: 1477-1482
  • 159 Fenton JI, Hord NG. Flavonoids promote cell migration in nontumorigenic colon epithelial cells differing in Apc genotype: implications of matrix metalloproteinase activity. Nutr Cancer 2004; 48: 182-188
  • 160 Vanamala J, Leonardi T, Patil BS, Taddeo SS, Murphy ME, Pike LM, Chapkin RS, Lupton JR, Turner ND. Suppression of colon carcinogenesis by bioactive compounds in grapefruit. Carcinogenesis 2006; 27: 1257-1265
  • 161 Sequetto PL, Oliveira TT, Maldonado IR, Augusto LE, Mello VJ, Pizziolo VR, Almeida MR, Silva ME, Novaes RD. Naringin accelerates the regression of pre-neoplastic lesions and the colorectal structural reorganization in a murine model of chemical carcinogenesis. Food Chem Toxicol 2014; 64: 200-209
  • 162 Ramesh E, Alshatwi AA. Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol 2013; 51: 97-105
  • 163 Kim DI, Lee SJ, Lee SB, Park K, Kim WJ, Moon SK. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis 2008; 29: 1701-1709
  • 164 Yeh SL, Wang WY, Huang CS, Hu ML. Flavonoids suppresses the enhancing effect of beta-carotene on DNA damage induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A549 cells. Chem Biol Interact 2006; 160: 175-182
  • 165 Nie YC, Wu H, Li PB, Xie LM, Luo YL, Shen JG, Su WW. Naringin attenuates EGF-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKs-AP-1 and IKKs-IκB-NF-κB signaling pathways. Eur J Pharmacol 2012; 690: 207-213
  • 166 Prabu T, Ragunath M, Manju V. Antioxidant potential of naringin – a dietary flavonoid – in N-nitrosodiethylamine induced rat liver carcinogenesis. Biomed Prev Nutr 2012; 2: 193-202
  • 167 Miller EG, Peacock JJ, Bourland TC, Taylor SE, Wright JM, Patil BS, Miller EG. Inhibition of oral carcinogenesis by citrus flavonoids. Nutr Cancer 2008; 60: 69-74
  • 168 Greinert R, Volkmer B, Henning S, Breitbart EW, Greulich KO, Cardoso MC, Rapp A. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Res 2012; 40: 10263-10273
  • 169 Kanno S, Tomizawa A, Hiura T, Osanai Y, Shouji A, Ujibe M, Ohtake T, Kimura K, Ishikawa M. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol Pharm Bull 2005; 28: 527-530
  • 170 Camargo CA, Gomes-Marcondes MC, Wutzki NC, Aoyama H. Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor α levels in rats with Walker 256 carcinosarcoma. Anticancer Res 2012; 32: 129-133
  • 171 Oršolić N, Benković V, Lisičić D, Dikić D, Erhardt J, Knežević AH. Protective effects of propolis and related polyphenolic/flavonoid compounds against toxicity induced by irinotecan. Med Oncol 2010; 27: 1346-1358
  • 172 Knežević AH, Dikić D, Lisičić D, Kopjar N, Oršolić N, Karabeg S, Benković V. Synergistic effects of irinotecan and flavonoids on Ehrlich ascites tumour-bearing mice. Basic Clin Pharmacol Toxicol 2011; 109: 343-349
  • 173 Pang WY, Wang XL, Mok SK, Lai WP, Chow HK, Leung PC, Yao XS, Wong MS. Naringin improves bone properties in ovariectomized mice and exerts oestrogen-like activities in rat osteoblast-like (UMR-106) cells. Br J Pharmacol 2010; 159: 1693-1703
  • 174 Wong RW, Rabie AB. Effect of naringin on bone cells. J Orthop Res 2006; 24: 2045-2050
  • 175 Wu JB, Fong YC, Tsai HY, Chen YF, Tsuzuki M, Tang CH. Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. Eur J Pharmacol 2008; 588: 333-341
  • 176 Li L, Zeng Z, Cai G. Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3 T3-E1. Phytomedicine 2011; 18: 985-989
  • 177 Ding P, Tang Q, Chen L. Effects of naringin on proliferation, differentiation and matrix mineralization of MC3 T3-E1 cells. Zhongguo Zhong Yao Za Zhi 2009; 34: 1712-1716
  • 178 Zhang P, Dai KR, Yan SG, Yan WQ, Zhang C, Chen DQ, Xu B, Xu ZW. Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. Eur J Pharmacol 2009; 607: 1-5
  • 179 Wong RW, Rabie AB. Effect of naringin collagen graft on bone formation. Biomaterials 2006; 27: 1824-1831
  • 180 Mandadi K, Ramirez M, Jayaprakasha GK, Faraji B, Lihono M, Deyhim F, Patil BS. Citrus bioactive compounds improve bone quality and plasma antioxidant activity in orchidectomized rats. Phytomedicine 2009; 16: 513-520
  • 181 Zhou X, Zhang P, Zhang C, Zhu Z. Promotion of bone formation by naringin in a titanium particle-induced diabetic murine calvarial osteolysis model. J Orthop Res 2010; 28: 451-456
  • 182 Habauzit V, Sacco SM, Gil-Izquierdo A, Trzeciakiewicz A, Morand C, Barron D, Pinaud S, Offord E, Horcajada MN. Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone 2011; 49: 1108-1116
  • 183 Chen LL, Lei LH, Ding PH, Tang Q, Wu YM. Osteogenic effect of Drynariae rhizoma extracts and Naringin on MC3 T3-E1 cells and an induced rat alveolar bone resorption model. Arch Oral Biol 2011; 56: 1655-1662
  • 184 Yu X, Zhao X, Wu T, Zhou Z, Gao Y, Wang X, Zhang CQ. Inhibiting wear particles-induced osteolysis with naringin. Int Orthop 2013; 37: 137-143
  • 185 Ang ES, Yang X, Chen H, Liu Q, Zheng MH, Xu J. Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-κB and ERK activation. FEBS Lett 2011; 585: 2755-2762
  • 186 Wei M, Yang Z, Li P, Zhang Y, Sse WC. Anti-osteoporosis activity of naringin in the retinoic acid-induced osteoporosis model. Am J Chin Med 2007; 35: 663-667
  • 187 Kawaguchi K, Maruyama H, Hasunuma R, Kumazawa Y. Suppression of inflammatory responses after onset of collagen-induced arthritis in mice by oral administration of the Citrus flavanone naringin. Immunopharmacol Immunotoxicol 2011; 33: 723-729
  • 188 Nowak-Solinska E, Rabie AB, Wong RW, Lei SW. The effect of naringin on early growth and development of the spheno-occipital synchondrosis as measured by the expression of PTHrP and Sox9 – an in vitro model. Eur J Orthod 2013; 35: 826-831
  • 189 Li A, Zhao JJ, Liu J, Shi JF, Rao GZ, Wei H, Gou JZ. Experimental study on the functional regulation of naringin in human periodontal ligament cells. Shanghai Kou Qiang Yi Xue 2011; 20: 561-566
  • 190 Tsui VW, Wong RW, Rabie AB. The inhibitory effects of naringin on the growth of periodontal pathogens in vitro . Phytother Res 2008; 22: 401-406
  • 191 Wood N. The effects of dietary bioflavonoid (rutin, quercetin, and naringin) supplementation on physiological changes in molar crestal alveolar bone-cemento-enamel junction distance in young rats. J Med Food 2004; 7: 192-196
  • 192 Wood N. The effects of selected dietary bioflavonoid supplementation on dental caries in young rats fed a high-sucrose diet. J Med Food 2007; 10: 694-701
  • 193 Itoh K, Hirata N, Masuda M, Naruto S, Murata K, Wakabayashi K, Matsuda H. Inhibitory effects of Citrus hassaku extract and its flavanone glycosides on melanogenesis. Biol Pharm Bull 2009; 32: 410-415
  • 194 Itoh K, Masuda M, Naruto S, Murata K, Matsuda H. Anti-allergic activity of unripe Citrus hassaku fruits extract and its flavanone glycosides on chemical substance-induced dermatitis in mice. J Nat Med 2009; 63: 443-450
  • 195 Gao S, Li P, Yang H, Fang S, Su W. Antitussive effect of naringin on experimentally induced cough in Guinea pigs. Planta Med 2011; 77: 16-21
  • 196 Kawaguchi K, Kikuchi S, Hasunuma R, Maruyama H, Ryll R, Kumazawa Y. Suppression of infection-induced endotoxin shock in mice by a citrus flavanone naringin. Planta Med 2004; 70: 17-22
  • 197 Lakshmi V, Joseph SK, Srivastava S, Verma SK, Sahoo MK, Dube V, Mishra SK, Murthy PK. Antifilarial activity in vitro and in vivo of some flavonoids tested against Brugia malayi. Acta Trop 2010; 116: 127-133
  • 198 Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 2011; 8: 560
  • 199 Duda-Chodak A. The inhibitory effect of polyphenols on human gut microbiota. J Physiol Pharmacol 2012; 63: 497-503
  • 200 Céliz G, Daz M, Audisio MC. Antibacterial activity of naringin derivatives against pathogenic strains. J Appl Microbiol 2011; 111: 731-738
  • 201 Lambev I, Belcheva A, Zhelyazkov D. Flavonoids with antioxidant action (naringin and rutin) and the release of mastocytic and nonmastocytic histamine. Acta Physiol Pharmacol Bulg 1980; 6: 70-75
  • 202 Oh HA, Kim MJ, Shin TY, Kim HM, Jeong HJ. The antiallergic mechanisms of Citrus sunki and bamboo salt (K-ALL) in an allergic rhinitis model. Exp Biol Med (Maywood) 2014; 239: 83-93
  • 203 Galati EM, Monforte MT, dʼAquino A, Miceli N, Di Mauro D, Sanogo R. Effects of naringin on experimental ulcer in rats. Phytomedicine 1998; 5: 361-366
  • 204 Martín MJ, Marhuenda E, Pérez-Guerrero C, Franco JM. Antiulcer effect of naringin on gastric lesions induced by ethanol in rats. Pharmacology 1994; 49: 144-150
  • 205 Jang Y, Kim TK, Shim WS. Naringin exhibits in vivo prokinetic activity via activation of ghrelin receptor in gastrointestinal motility dysfunction rats. Pharmacology 2013; 92: 191-197
  • 206 Oki K, Plonczynski MW, Lam ML, Gomez-Sanchez EP, Gomez-Sanchez CE. The potassium channel, Kir3.4 participates in angiotensin II-stimulated aldosterone production by a human adrenocortical cell line. Endocrinology 2012; 153: 4328-4335
  • 207 Herrera MD, Marhuenda E. Effect of naringin and naringenin on contractions induced by noradrenaline in rat vas deferens–I. Evidence for postsynaptic alpha-2 adrenergic receptor. Gen Pharmacol 1993; 24: 739-742
  • 208 Shaik N, Zbidah M, Lang F. Inhibition of Ca(2+) entry and suicidal erythrocyte death by naringin. Cell Physiol Biochem 2012; 30: 678-686