Z Orthop Unfall 2014; 152(2): 144-151
DOI: 10.1055/s-0034-1368208
Knochenersatz
Georg Thieme Verlag KG Stuttgart · New York

Einsatz der Bone morphogenetic Proteins (BMPs) zur Behandlung von Pseudarthrosen – Effizienz und Therapieversagen

Use of Bone Morphogenetic Proteins (BMPs) for the Treatment of Pseudarthroses – Efficiency and Therapy Failure
M. Hausmann
BG Trauma Center, Eberhard-Karls-Universität Tübingen
,
S. Ehnert
BG Trauma Center, Eberhard-Karls-Universität Tübingen
,
V. Hofmann
BG Trauma Center, Eberhard-Karls-Universität Tübingen
,
S. Döbele
BG Trauma Center, Eberhard-Karls-Universität Tübingen
,
T. Freude
BG Trauma Center, Eberhard-Karls-Universität Tübingen
,
U. Stöckle
BG Trauma Center, Eberhard-Karls-Universität Tübingen
,
A. Nussler
BG Trauma Center, Eberhard-Karls-Universität Tübingen
› Author Affiliations
Further Information

Publication History

Publication Date:
23 April 2014 (online)

Zusammenfassung

In der Therapie von Pseudarthrosen der proximalen Tibia kommen seit einigen Jahren die humanen rekombinanten „bone morphogenetic proteins“ (BMP-2 und BMP-7) zum Einsatz. Trotz limitiertem und spezifischem Einsatz als lokale Mediatoren der Knochenheilung können bisher keine Aussagen über den jeweiligen Erfolg der Therapie im Voraus getroffen werden. Die Regelmechanismen zeigen sich als wesentlich komplexer und patientenspezifischer als bisher angenommen. Zum Verständnis der zellbiologischen Abläufe (Signalling) und der bisher möglichen Prädiktion eines erfolgreichen Einsatzes von BMP sind in diesem Artikel die relevanten Erkenntnisse zusammengefasst.

Abstract

In the therapy for pseudarthroses of the proximal tibia, the human recombinant bone morphogenetic proteins (BMP-2 and BMP-7) have been used for several years. Despite their limited and specified use as local mediators of bone healing, no conclusions regarding the therapeutic success can be made beforehand. The regulatory mechanisms have turned out to be much more complex and patient-specific than had been assumed before. To help understand the cell biological processes (signalling) and the current possibilities of predicting a successful use of BMP, this article summarises the relevant findings.

 
  • Literatur

  • 1 Strohm PC, Bannasch H, Helwig P et al. Offene Fraktur und Weichteilschaden. Z Orthop Unfall 2010; 148: 95-112
  • 2 Govender S, Csimma C, Genant HK et al. Recombinant human bone morphogenetic protein2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002; 84: 2123-2134
  • 3 Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 2012; 8: 272-288
  • 4 Kang Q, Sun M, Cheng H et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 2004; 11: 1312-1320
  • 5 Ehnert S, Baur J, Schmitt A et al. TGF-beta1 as possible link between loss of bone mineral density and chronic inflammation. PLoS One 2010; 5: e14073
  • 6 Dobele S, Horn C, Eichhorn S et al. The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbecks Arch Surg 2010; 395: 421-428
  • 7 Perren SM, Perren T, Schneider E. Biologie und Osteosynthese – Ein Widerspruch?. Ther Umsch 2003; 60: 713-721
  • 8 Wozney JM, Rosen V, Celeste AJ et al. Novel regulators of bone formation: molecular clones and activities. Science 1988; 242: 1528-1534
  • 9 Rosen V. BMP and BMP inhibitors in bone. Ann N Y Acad Sci 2006; 1068: 19-25
  • 10 Breitbart AS, Grande DA, Mason JM et al. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg 1999; 42: 488-495
  • 11 Fukunaga K, Minoda Y, Iwakiri K et al. Early biological fixation of porous implant coated with paste-retaining recombinant bone morphogenetic protein 2. J Arthroplasty 2012; 27: 143-149
  • 12 Sumner DR, Turner TM, Urban RM et al. Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model. J Orthop Res 2004; 22: 58-65
  • 13 Thorey F, Menzel H, Lorenz C et al. Enhancement of endoprosthesis anchoring using BMP-2. Technol Health Care 2010; 18: 217-229
  • 14 Thorey F, Menzel H, Lorenz C et al. Osseointegration by bone morphogenetic protein-2 and transforming growth factor beta2 coated titanium implants in femora of New Zealand white rabbits. Indian J Orthop 2011; 45: 57-62
  • 15 Schmidmaier G, Wildemann B, Cromme F et al. Bone morphogenetic protein-2 coating of titanium implants increases biomechanical strength and accelerates bone remodeling in fracture treatment: a biomechanical and histological study in rats. Bone 2002; 30: 816-822
  • 16 Itoh S, Matubara M, Kawauchi T et al. Enhancement of bone ingrowth in a titanium fiber mesh implant by rhBMP-2 and hyaluronic acid. J Mater Sci Mater Med 2001; 12: 575-581
  • 17 Woo BH, Fink BF, Page R et al. Enhancement of bone growth by sustained delivery of recombinant human bone morphogenetic protein-2 in a polymeric matrix. Pharm Res 2001; 18: 1747-1753
  • 18 Little DG, McDonald M, Bransford R et al. Manipulation of the anabolic and catabolic responses with OP-1 and zoledronic acid in a rat critical defect model. J Bone Miner Res 2005; 20: 2044-2052
  • 19 Pluhar GE, Turner AS, Pierce AR et al. A comparison of two biomaterial carriers for osteogenic protein-1 (BMP-7) in an ovine critical defect model. J Bone Joint Surg Br 2006; 88: 960-966
  • 20 Patel ZS, Young S, Tabata Y et al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 2008; 43: 931-940
  • 21 Donati D, Di Bella C, Lucarelli E et al. OP-1 application in bone allograft integration: preliminary results in sheep experimental surgery. Injury 2008; 39: 65-72
  • 22 Wildemann B, Lange K et al. Strobel C – et al. Local BMP-2 application can rescue the delayed osteotomy healing in a rat model. Injury 2011; 42: 746-752
  • 23 Notodihardjo FZ, Kakudo N, Kushida S et al. Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg 2012; 40: 287-291
  • 24 Schmoekel HG, Weber FE, Schense JC et al. Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol Bioeng 2005; 89: 253-262
  • 25 Chung YI, Ahn KM, Jeon SH et al. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release 2007; 121: 91-99
  • 26 Strobel C, Bormann N, Kadow-Romacker A et al. Sequential release kinetics of two (gentamicin and BMP-2) or three (gentamicin, IGF-I and BMP-2) substances from a one-component polymeric coating on implants. J Control Release 2011; 156: 37-45
  • 27 Wildemann B, Kandziora F, Krummrey G et al. Local and controlled release of growth factors (combination of IGF-I and TGF-beta I, and BMP-2 alone) from a polylactide coating of titanium implants does not lead to ectopic bone formation in sheep muscle. J Control Release 2004; 95: 249-256
  • 28 Dibotermin alfa (InductOs®, Wyeth). In: Pharmazeutische Zeitung online; Govi-Verlag (2003). Im Internet: http://www.pharmazeutische-zeitung.de/index.php?id=157 Stand: 25.03.2013
  • 29 Eptotermin alfa, Osigraft® (Stryker). In: Pharmazeutische Zeitung online; Govi-Verlag (2007). Im Internet: http://www.pharmazeutische-zeitung.de/index.php?id=3408 Stand: 25.03.2013
  • 30 Friedlaender GE, Perry CR, Cole JD et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions: a prospective, randomized clinical trial comparing rhOP-1 with fresh bone autograft. J Bone Joint Surg Am 2001; 83 (Suppl. 01) S151-S158
  • 31 McKee MD, Schemitsch EH, Waddell JP et al. The effect of human recombinant bone morphogenic protein (rhBMP-7) on the healing of open tibial shaft fractures: results of a multi-center, prospective, randomized clinical trial. In: Proceedings of the 18th Annual Meeting of the Orthopaedic Trauma Association, Oct 11 – 13, Toronto, Ontario, Canada; 2002: 157 – 158.
  • 32 Jones AL, Buchholz RW, Bosse MJ et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am 2006; 88: 1431-1441
  • 33 Calori GM, DʼAvino M, Tagliabue L et al. An ongoing research for evaluation of treatment with BMPs or AGFs in long bone non-union: protocol description and preliminary results. Injury 2006; 37: 43-50
  • 34 Ekrol I, Hajducka C, Court-Brown C et al. A comparison of RhBMP-7 (OP-1) and autogenous graft for metaphyseal defects after osteotomy of the distal radius. Injury 2008; 39: 73-82
  • 35 Leach J, Bittar RG. BMP-7 (OP-1) safety in anterior cervical fusion surgery. J Clin Neurosci 2009; 16: 1417-1420
  • 36 Shimer AL, Oncer FC, Vaccaro AR. Spinal reconstruction and bone morphogenetic proteins: open questions. Injury 2009; 40: 32-38
  • 37 Ehnert S, Zhao J, Pscherer S et al. Transforming growth factor beta1 inhibits bone morphogenic protein (BMP)-2 and BMP-7 signaling via upregulation of Ski-related novel protein N (SnoN): possible mechanism for the failure of BMP therapy?. BMC Med 2012; 10: 101
  • 38 Garrison KR, Shemilt I, Donell S et al. Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev 2010; (6) CD006950
  • 39 Garrison KR, Donell S, Ryder J et al. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess 2007; 30: 1-150
  • 40 Alt V, Heissel A. Economic considerations for the use of recombinant human bone morphogenetic protein-2 in open tibial fractures in Europe: the German model. Curr Med Res Opin 2006; 22 (Suppl. 01) S19-S22
  • 41 Luo J, Tang M, Huang J et al. TGFbeta/BMP type I receptors ALK1 and ALK2 are essential for BMP9-induced osteogenic signaling in mesenchymal stem cells. J Biol Chem 2010; 285: 29588-29598
  • 42 Piek E, Heldin C-H, Ten Dijke P. Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J 1999; 13: 2105-2124
  • 43 Wu N, Zhao Y, Yin Y et al. Identification and analysis of type II TGF-beta receptors in BMP-9-induced osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 2010; 42: 699-708
  • 44 Kloos DU, Choi C, Wingender E. The TGF-β–Smad network: introducing bioinformatic tools. Trends Genet 2002; 18: 96-103
  • 45 Miyazawa K, Shinozaki M, Hara T et al. Two major Smad pathways in TGF-β superfamily signalling. Genes Cells 2002; 7: 1191-1204
  • 46 Lai CF, Cheng SL. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J Biol Chem 2002; 277: 15514-15522
  • 47 Ross S, Hill CS. How the Smads regulate transcription. Int J Biochem Cell Biol 2008; 40: 383-408
  • 48 Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003; 425: 577-584
  • 49 Moustakas A. Smad Signalling network. J Cell Sci 2002; 115: 3355-3356
  • 50 Tang N, Song WX, Luo J et al. BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med 2009; 13: 2448-2464
  • 51 Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 2005; 24: 5742-5750
  • 52 Zhao Y, Song T, Wang W et al. P38 and ERK1/2 MAPKs act in opposition to regulate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS One 2012; 7: e43383
  • 53 Nguyen J, Tang SY, Nguyen D et al. Load regulates bone formation and Sclerostin expression through a TGFbeta-dependent mechanism. PLoS One 2013; 8: e53813
  • 54 McMahon MS. Bone morphogenic protein 3 signaling in the regulation of osteogenesis. Orthopedics 2012; 35: 920
  • 55 Cook SD. Preclinical and clinical evaluation of osteogenic Protein 1 (BMP-7) in bony sites. Orthopedics 1999; 22: 669-671
  • 56 Geesink RG, Hoefnagels NH, Bulstra SK. Osteogenic activity of OP 1 bone morphogenetic protein (BMP 7) in a human fibular defect. J Bone Joint Surg Br 1999; 81: 710-718
  • 57 Chen G, Yang JZ, Xu HM et al. The application of NNB/BMP complex in the treatment of ununited tibia fracture. Orthopedic Journal of China 2000; 7: 758-761
  • 58 Govender S, Csimma C, Genant HK et al. Recombinant human bone morphogenetic protein 2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002; 48: 2123-2134
  • 59 Maniscalco P, Gambera D, Bertone C et al. Healing of fresh tibial fractures with OP1. A preliminary report. Acta Biomed 2002; 73: 27-33
  • 60 Murphy C. Endo-fin-ally a SARA for BMP receptors. J Cell Sci 2007; 120: 1153-1155
  • 61 Bahamonde ME, Lyons KM. BMP3: to be or not to be a BMP. J Bone Joint Surg Am 2001; 83: 56-62