Subscribe to RSS
DOI: 10.1055/s-0034-1367023
A New Paradigm to Understand and Treat Diabetic Neuropathy
Publication History
received 03 September 2013
first decision 03 December 2013
accepted 17 January 2014
Publication Date:
12 March 2014 (online)
Abstract
The clinical symptoms of diabetic neuropathy (DN) manifest in a time dependent manner as a positive symptoms (i. e. pain, hypersensitivity, tingling, cramps, cold feet etc.) during its early stages and by a loss of function (i. e. loss of sensory perception, delayed wound healing etc.) predominating in the later stages. Elevated blood glucose alone cannot explain the development and progression of DN and the lowering of blood glucose is insufficient in preventing and/or reversing neuropathy in patients with type 2 diabetes. Recently it has been shown that the endogenous reactive metabolite methylglyoxal (MG) can contribute to the gain of function via post-translational modification in DN of neuronal ion channels involved in chemosensing and action potential generation in nociceptive nerve endings. Dicarbonyls, such as MG, that are elevated in diabetic patients, modify DNA as well as extra- and intracellular proteins, leading to the formation of advanced glycation endproducts (AGEs). Increased formation of AGEs leads to increased cellular stress, dysfunction and ultimately cell death. The interaction of AGE-modified proteins through cell surface receptors, such as RAGE, can lead to increased cellular activation and sustained inflammatory responses, which are the molecular hallmarks of the later, degenerative, stages of DN. The direct and indirect effects of dicarbonyls on nerves or neuronal microvascular network provides a unifying mechanism for the development and progression of DN. Targeting the accumulation of MG and/or prevention of RAGE interactions may therefore provide new, more effective, therapeutic approaches for the treatment of DN.
-
References
- 1 Hoffmann F, Icks a. Diabetes “epidemic” in Germany? A critical look at health insurance data sources. Exp. Clin. Endocrinol. Diabetes [Internet] 2012; 120: 410-415 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22441721
- 2 Callaghan BC, Cheng HT, Stables CL et al. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol [Internet] Elsevier Ltd 2012; [cited 2013 Mar 7] 11: 521-534 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22608666
- 3 Callaghan BC, Little AA, Feldman EL et al. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev [Internet] 2012; [cited 2013 May 10] 6 CD007543. Available from http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD007543.pub2/pdf/standard
- 4 Ismail-Beigi F, Craven T, Banerji MA et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet [Internet]. Elsevier Ltd 2010; [cited 2013 Mar 4] 376: 419-430 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20594588
- 5 Turner R, Holman R, Cull C. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet [Internet] 1998; [cited 2013 Mar 6] 352: 837-853 Available from http://discovery.ucl.ac.uk/1310755/
- 6 Duckworth W, Abraira C, Moritz T et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med [Internet] 2009; 360: 129-39 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19092145
- 7 Bongaerts BWC, Rathmann W, Kowall B et al. Postchallenge hyperglycemia is positively associated with diabetic polyneuropathy: the KORA F4 study. Diabetes Care [Internet] 2012; [cited 2013 May 6] 35: 1891-1893 Available from http://www.ncbi.nlm.nih.gov/pubmed/22751964
- 8 Lu B, Hu J, Wen J et al. Determination of Peripheral Neuropathy Prevalence and Associated Factors in Chinese Subjects with Diabetes and Pre-Diabetes – ShangHai Diabetic neuRopathy Epidemiology and Molecular Genetics Study (SH-DREAMS). PLoS One [Internet] 2013; [cited 2013 May 26] 8: e61053 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3628856&tool=pmcentrez&rendertype=abstract
- 9 Fleming T, Cuny J, Nawroth G et al. Is diabetes an acquired disorder of reactive glucose metabolites and their intermediates?. Diabetologia [Internet] 2012; [cited 2013 Jan 31] 55: 1151-1155 Available from http://www.ncbi.nlm.nih.gov/pubmed/22270223
- 10 Thornalley PJ, Jahan I, Ng R. Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro. J Biochem [Internet] 2001; 129: 543-549 Available from http://www.ncbi.nlm.nih.gov/pubmed/11275553
- 11 Thurston JH, McDougal DB, Hauhart RE et al. Effects of acute, subacute, and chronic diabetes on carbohydrate and energy metabolism in rat sciatic nerve. Relation to mechanisms of peripheral neuropathy. Diabetes [Internet] 1995; [cited 2013 Jun 22] 44: 190-195 Available from http://www.ncbi.nlm.nih.gov/pubmed/7859940
- 12 Thornalley PJ. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems – role in ageing and disease. Drug Metabol Drug Interact [Internet] 2008; [cited 2013 Jun 22] 23: 125-150 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2649415&tool=pmcentrez&rendertype=abstract
- 13 Lo TW, Westwood ME, McLellan AC et al. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem [Internet] 1994; [cited 2013 Jun 22] 269: 32299-32305 Available from http://www.ncbi.nlm.nih.gov/pubmed/7798230
- 14 Thornalley PJ. The Clinical Significance of Glycation. Clin Lab 1999; 45: 263-273
- 15 Vlassara H, Brownlee M, Cerami A. Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci U S A [Internet] 1981; 78: 5190-5192 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=320369&tool=pmcentrez&rendertype=abstract
- 16 Vlassara H, Brownlee M, Cerami A. Excessive nonenzymatic glycosylation of peripheral and central nervous system myelin components in diabetic rats. Diabetes [Internet] 1983; [cited 2013 Jun 22] 32: 670-674 Available from http://www.ncbi.nlm.nih.gov/pubmed/6862112
- 17 Williams SK, Howarth NL, Devenny JJ et al. Structural and functional consequences of increased tubulin glycosylation in diabetes mellitus. Proc Natl Acad Sci U S A [Internet] 1982; [cited 2013 Jun 22] 79: 6546-6550 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=347164&tool=pmcentrez&rendertype=abstract
- 18 Cullum NA, Mahon J, Stringer K et al. Glycation of rat sciatic nerve tubulin in experimental diabetes mellitus. Diabetologia [Internet] 1991; [cited 2013 Jun 22] 34: 387-389 Available from http://www.ncbi.nlm.nih.gov/pubmed/1715829
- 19 Sugimoto K, Nishizawa Y, Horiuchi S et al. Localization in human diabetic peripheral nerve of N(epsilon)-carboxymethyllysine-protein adducts, an advanced glycation endproduct. Diabetologia [Internet] 1997; [cited 2013 Jun 22] 40: 1380-1387 Available from http://www.ncbi.nlm.nih.gov/pubmed/9447944
- 20 Ryle C, Donaghy M. Non-enzymatic glycation of peripheral nerve proteins in human diabetics. J Neurol Sci [Internet] 1995; [cited 2013 Jun 22] 129: 62-68 Available from http://www.ncbi.nlm.nih.gov/pubmed/7751847
- 21 Ryle C, Leow CK, Donaghy M. Nonenzymatic glycation of peripheral and central nervous system proteins in experimental diabetes mellitus. Muscle Nerve [Internet] 1997; [cited 2013 Jun 22] 20: 577-584 Available from http://www.ncbi.nlm.nih.gov/pubmed/9140364
- 22 Sensi M, Morano S, Morelli S et al. Reduction of advanced glycation end-product (AGE) levels in nervous tissue proteins of diabetic Lewis rats following islet transplants is related to different durations of poor metabolic control. Eur J Neurosci [Internet] 1998; [cited 2013 Jun 22] 10: 2768-2775 Available from http://www.ncbi.nlm.nih.gov/pubmed/9758147
- 23 Thornalley PJ, Battah S, Ahmed N et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J [Internet] 2003; 375: 581-592 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1223712&tool=pmcentrez&rendertype=abstract
- 24 Bierhaus A, Fleming T, Stoyanov S et al. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat Med [Internet] 2012; [cited 2013 Mar 15] 18: 926-933 Available from http://www.ncbi.nlm.nih.gov/pubmed/22581285
- 25 Rush AM, Dib-Hajj SD, Liu S et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci U S A [Internet] 2006; [cited 2013 Jul 23] 103: 8245-8250 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1472458&tool=pmcentrez&rendertype=abstract
- 26 Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol [Internet] 2007; [cited 2013 May 22] 579: 1-14 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2075388&tool=pmcentrez&rendertype=abstract
- 27 Eberhardt MJ, Filipovic MR, Leffler A et al. Methylglyoxal activates nociceptors through TRPA1 – a possible mechanism of metabolic neuropathies. J Biol Chem [Internet] 2012; Available from http://www.ncbi.nlm.nih.gov/pubmed/22740698
- 28 Thornalley PJ. Glyoxalase I – structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans [Internet] 2003; 31: 1343-1348 Available from http://www.ncbi.nlm.nih.gov/pubmed/14641060
- 29 Jack MM, Ryals JM, Wright DE. Characterisation of glyoxalase I in a streptozocin-induced mouse model of diabetes with painful and insensate neuropathy. Diabetologia [Internet] 2011; [cited 2013 Apr 19] 54: 2174-2182 Available from http://www.ncbi.nlm.nih.gov/pubmed/21633909
- 30 Jack MM, Ryals JM, Wright DE. Protection from diabetes-induced peripheral sensory neuropathy – a role for elevated glyoxalase I?. Exp Neurol [Internet] Elsevier Inc 2012; [cited 2013 Apr 19] 234: 62-69 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3294099&tool=pmcentrez&rendertype=abstract
- 31 Skapare E, Konrade I, Liepinsh E et al. Association of reduced glyoxalase 1 activity and painful peripheral diabetic neuropathy in type 1 and 2 diabetes mellitus patients. J Diabetes Complications [Internet] Elsevier Inc 2013; [cited 2013 Apr 19] 10-15 Available from http://www.ncbi.nlm.nih.gov/pubmed/23351995
- 32 Groener JB, Reismann P, Fleming T et al. Hamann a, et al. C332C Genotype of Glyoxalase 1 and its Association with Late Diabetic Complications. Exp Clin Endocrinol Diabetes [Internet] 2013; Available from http://www.ncbi.nlm.nih.gov/pubmed/23775136
- 33 Peculis R, Konrade I, Skapare E et al. Identification of glyoxalase 1 polymorphisms associated with enzyme activity. Gene [Internet]. Elsevier B.V 2013; [cited 2013 Apr 17] 515: 140-143 Available from http://www.ncbi.nlm.nih.gov/pubmed/23201419
- 34 Morcos M, Du X, Pfisterer F et al. Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell [Internet] 2008; [cited 2013 Mar 8] 7: 260-269 Available from http://www.ncbi.nlm.nih.gov/pubmed/18221415
- 35 Schlotterer A, Kukudov G, Bozorgmehr F et al. C. elegans as Model for the Study of High Glucose – Mediated Life Span Reduction. Diabetes [Internet]. American Diabetes Association 2009; 58: 2450-2456 Available from http://dx.doi.org/10.2337/db09-0567
- 36 Mendler M, Schlotterer A, Morcos M et al. Understanding diabetic polyneuropathy and longevity: what can we learn from the nematode Caenorhabditis elegans?. Exp Clin Endocrinol Diabetes [Internet] 2012; [cited 2013 May 9] 120: 182-183 Available from http://www.ncbi.nlm.nih.gov/pubmed/8247153
- 37 Sima aaF. New insights into the metabolic and molecular basis for diabetic neuropathy. Cell Mol Life Sci [Internet] 2003; [cited 2013 Jun 22] 60: 2445-2464 Available from http://www.ncbi.nlm.nih.gov/pubmed/14625688
- 38 Vincent AM, Feldman EL. New insights into the mechanisms of diabetic neuropathy. Rev Endocr Metab Disord [Internet] 2004; [cited 2013 Jun 22] 5: 227-236 Available from http://www.ncbi.nlm.nih.gov/pubmed/15211094
- 39 Chammas M, Bousquet P, Renard E et al. Dupuytren’s disease, carpal tunnel syndrome, trigger finger, and diabetes mellitus. J Hand Surg Am [Internet] 1995; [cited 2013 Jun 22] 20: 109-114 Available from http://www.ncbi.nlm.nih.gov/pubmed/7722249
- 40 Kennedy JM, Zochodne DW. The regenerative deficit of peripheral nerves in experimental diabetes: its extent, timing and possible mechanisms. Brain [Internet] 2000; 123: 2118-2129 Available from http://www.ncbi.nlm.nih.gov/pubmed/11004128
- 41 Stys PK. General mechanisms of axonal damage and its prevention. J Neurol Sci [Internet] 2005; [cited 2013 May 28] 233: 3-13 Available from http://linkinghub.elsevier.com/retrieve/pii/S0022510×05000754
- 42 Davies KJ. Oxidative stress: the paradox of aerobic life. Biochem Soc Symp [Internet] 1995; [cited 2013 Jun 22] 61: 1-31 Available from http://www.ncbi.nlm.nih.gov/pubmed/8660387
- 43 Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature [Internet] 2000; [cited 2013 May 29] 408: 239-247 Available from http://www.ncbi.nlm.nih.gov/pubmed/11089981
- 44 Murphy MP. How mitochondria produce reactive oxygen species. Biochem J [Internet] 2009; [cited 2013 Jun 17] 417: 1-13 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2605959&tool=pmcentrez&rendertype=abstract
- 45 Hentze MW, Muckenthaler MU, Galy B et al. Two to tango: regulation of Mammalian iron metabolism. Cell [Internet] 2010; [cited 2013 May 28] 142: 24-38 Available from http://www.ncbi.nlm.nih.gov/pubmed/20603012
- 46 Forouhi NG, Harding aH, Allison M et al. Elevated serum ferritin levels predict new-onset type 2 diabetes: results from the EPIC-Norfolk prospective study. Diabetologia [Internet] 2007; [cited 2013 Jun 14] 50: 949-956 Available from http://www.ncbi.nlm.nih.gov/pubmed/17333112
- 47 Fernández-Real JM, López-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes [Internet] 2002; [cited 2013 Jul 5] 51: 2348-2354 Available from http://www.ncbi.nlm.nih.gov/pubmed/12145144
- 48 Ford ES, Cogswell ME. Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care [Internet] 1999; [cited 2013 Jul 5] 22: 1978-1983 Available from http://www.ncbi.nlm.nih.gov/pubmed/10587829
- 49 O’Brien PJ, Siraki AG, Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol [Internet] 2005; [cited 2013 Jun 22] 35: 609-662 Available from http://www.ncbi.nlm.nih.gov/pubmed/16417045
- 50 Rabbani N, Thornalley PJ. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids [Internet] 2012; [cited 2013 Mar 2] 42: 1133-1142 Available from http://www.ncbi.nlm.nih.gov/pubmed/20963454
- 51 Rosca MG, Mustata TG, Kinter MT et al. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol Renal Physiol [Internet] 2005; [cited 2013 Jun 27] 289: F420-F430 Available from http://www.ncbi.nlm.nih.gov/pubmed/15814529
- 52 Rabbani N, Thornalley PJ. Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress. Biochem Soc Trans [Internet] 2008; [cited 2013 Jun 22] 36: 1045-1050 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2639773&tool=pmcentrez&rendertype=abstract
- 53 Kapoor R, Davies M, Blaker Pa et al. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol [Internet] 2003; [cited 2013 Jun 22] 53: 174-180 Available from http://www.ncbi.nlm.nih.gov/pubmed/12557283
- 54 Mack TG, Reiner M, Beirowski B et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci [Internet] 2001; [cited 2013 May 31] 4: 1199-1206 Available from http://www.ncbi.nlm.nih.gov/pubmed/11770485
- 55 Adalbert R, Gillingwater TH, Haley JE et al. A rat model of slow Wallerian degeneration (WldS) with improved preservation of neuromuscular synapses. Eur J Neurosci [Internet] 2005; [cited 2013 Jun 22] 21: 271-277 Available from http://www.ncbi.nlm.nih.gov/pubmed/15654865
- 56 Ikegami K, Koike T. Non-apoptotic neurite degeneration in apoptotic neuronal death: pivotal role of mitochondrial function in neurites. Neuroscience [Internet] 2003; [cited 2013 Jun 22] 122: 617-626 Available from http://linkinghub.elsevier.com/retrieve/pii/S0306452203006687
- 57 Sievers C, Platt N, Perry VH et al. Neurites undergoing Wallerian degeneration show an apoptotic-like process with Annexin V positive staining and loss of mitochondrial membrane potential. Neurosci Res [Internet] 2003; [cited 2013 Jun 22] 46: 161-169 Available from http://www.ncbi.nlm.nih.gov/pubmed/12767479
- 58 Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci [Internet] 2007; [cited 2013 May 31] 10: 1361-1368 Available from http://www.ncbi.nlm.nih.gov/pubmed/17965656
- 59 Cámara-Lemarroy CR, Guzmán-de la Garza FJ, Fernández-Garza NE. Molecular inflammatory mediators in peripheral nerve degeneration and regeneration. Neuroimmunomodulation [Internet] 2010; [cited 2013 Jun 22] 17: 314-324 Available from http://www.ncbi.nlm.nih.gov/pubmed/20407283
- 60 Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation [Internet] BioMed Central Ltd 2011; [cited 2013 Jun 22] 8: 110 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3180276&tool=pmcentrez&rendertype=abstract
- 61 Greene DA, Sima AA, Stevens MJ et al. Complications: neuropathy, pathogenetic considerations. Diabetes Care [Internet] 1992; [cited 2013 Jun 22] 15: 1902-1925 Available from http://www.ncbi.nlm.nih.gov/pubmed/1464245
- 62 Feldman EL, Stevens MJ, Greene DA. Pathogenesis of diabetic neuropathy. Clin Neurosci [Internet] 1997; [cited 2013 Jun 22] 4: 365-370 Available from http://www.ncbi.nlm.nih.gov/pubmed/9358981
- 63 Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest [Internet] 2005; [cited 2013 Jun 19] 115: 1111-1119 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1087185&tool=pmcentrez&rendertype=abstract
- 64 Hotamisligil GS. Inflammation and metabolic disorders. Nature [Internet] 2006; [cited 2013 May 21] 444: 860-867 Available from http://www.ncbi.nlm.nih.gov/pubmed/17167474
- 65 Matarese G, Procaccini C, De Rosa V. At the crossroad of T cells, adipose tissue, and diabetes. Immunol Rev [Internet] 2012; 249: 116-134 Available from http://www.ncbi.nlm.nih.gov/pubmed/22889219
- 66 Zhou J, Zhou S. Inflammation: Therapeutic Targets for Diabetic Neuropathy. Mol Neurobiol [Internet] 2013; [cited 2013 Nov 11]; (August). Available from http://www.ncbi.nlm.nih.gov/pubmed/23990376
- 67 Sims GP, Rowe DC, Rietdijk ST et al. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol [Internet] 2010; [cited 2013 May 23] 28: 367-388 Available from http://www.ncbi.nlm.nih.gov/pubmed/20192808
- 68 Tang D, Kang R, Coyne CB et al. PAMPs and DAMPs: signal 0 s that spur autophagy and immunity. Immunol Rev [Internet] 2012; 249: 158-175 Available from http://www.ncbi.nlm.nih.gov/pubmed/22889221
- 69 Fleming TH, Humpert PM, Nawroth PP et al. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology [Internet] 2011; [cited 2013 Jan 31] 57: 435-443 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20962515
- 70 Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia [Internet] 2009; [cited 2013 May 31] 52: 2251-2263 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19636529
- 71 Bierhaus A, Humpert PM, Morcos M et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) [Internet] 2005; [cited 2013 May 24] 83: 876-886 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16133426
- 72 Xu D, Kyriakis JM. Phosphatidylinositol 3’-kinase-dependent activation of renal mesangial cell Ki-Ras and ERK by advanced glycation end products. J Biol Chem [Internet] 2003; [cited 2013 Jun 27] 278: 39349-39355 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12871951
- 73 Yeh CH, Sturgis L, Haidacher J et al. Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes [Internet] 2001; [cited 2013 Jun 27] 50: 1495-1504 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11375353
- 74 Kierdorf K, Fritz G. RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol [Internet] 2013; [cited 2013 May 30] 94: 1-14 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23543766
- 75 Mahajan N, Dhawan V. Receptor for advanced glycation end products (RAGE) in vascular and inflammatory diseases. Int J Cardiol [Internet] Elsevier Ireland Ltd 2013; [cited 2013 Jun 4] Available from http://www.ncbi.nlm.nih.gov/pubmed/23722052
- 76 Bierhaus A, Haslbeck K, Humpert PM et al. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest [Internet] 2004; [cited 2013 May 10] 114: 1741-1751 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=535062&tool=pmcentrez&rendertype=abstract
- 77 Lukic IK, Humpert PM, Nawroth PP et al. The RAGE pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann N Y Acad Sci [Internet] 2008; [cited 2013 May 30] 1126: 76-80 Available from http://www.ncbi.nlm.nih.gov/pubmed/18448798
- 78 Pham M, Oikonomou D, Bäumer P et al. Proximal neuropathic lesions in distal symmetric diabetic polyneuropathy: findings of high-resolution magnetic resonance neurography. Diabetes Care [Internet] 2011; [cited 2013 Mar 19] 34: 721-723 Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3041214&tool=pmcentrez&rendertype=abstract
- 79 Juranek JK, Geddis MS, Song F et al. RAGE deficiency improves postinjury sciatic nerve regeneration in type 1 diabetic mice. Diabetes [Internet] 2013; [cited 2013 Apr 29] 62: 931-943 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23172920
- 80 Duran-Jimenez B, Dobler D, Moffatt S et al. Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes [Internet] 2009; [cited 2013 May 10] 58: 2893-2903 Available from: http://diabetes.diabetesjournals.org/content/58/12/2893.short