Fortschr Neurol Psychiatr 2014; 82(8): 471-482
DOI: 10.1055/s-0034-1366703
Fort- und Weiterbildung
© Georg Thieme Verlag KG Stuttgart · New York

Zerebrale Marklagerhyperintensitäten in der Magnetresonanztomografie und deren klinische Relevanz

The Clinical Implication of Cerebral White Matter Hyperintensities on Magnetic Resonance Imaging
T. Gattringer
,
F. Fazekas
Further Information

Publication History

Publication Date:
08 August 2014 (online)

Lernziele

Dieser Fortbildungsartikel soll einen Überblick über die Definition, die Differentialdiagnose und vor allem die klinische Bedeutung von Marklagerhyperintensitäten (White Matter Hyperintensities, WMH) in der zerebralen Magnetresonanztomografie geben. Diese Veränderungen sind in unterschiedlichem Ausmaß und altersabhängig bei einer Vielzahl von Personen bzw. Patienten zu finden und werden daher häufig in neuroradiologischen Befunden beschrieben. Demzufolge ist ein Grundverständnis von WMH nicht nur für Ärzte aus dem Bereich der Neurowissenschaften, sondern auch für Allgemeinmediziner und Ärzte aus verschiedenen anderen Fachbereichen von Relevanz. Es soll vor allem auf die klinische Bedeutung dieser Signalveränderungen eingegangen sowie deren Prognose und therapeutische Aspekte diskutiert werden.

 
  • Literatur

  • 1 Vernooij MW, Ikram MA, Tanghe HL et al. Incidental findings on brain MRI in the general population. N Engl J Med 2007; 357: 1821-1828
  • 2 Wardlaw JM, Smith EE, Biessels GJ et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12: 822-838
  • 3 Fazekas F, Schmidt R, Kleinert R et al. The spectrum of age-associated brain abnormalities: their measurement and histopathological correlates. J Neural Transm 1998; 53: S31-S39
  • 4 Gouw AA, Seewann A, Vrenken H et al. Heterogeneity of white matter hyperintensities in Alzheimer's disease: post-mortem quantitative MRI and neuropathology. Brain 2008; 131: 3286-3298
  • 5 Schmidt R, Schmidt H, Haybaeck J et al. Heterogeneity in age-related white matter changes. Acta Neuropathol 2011; 122: 171-185
  • 6 Hachinski V, Potter P, Merskey H. Leuko-araiosis. Arch Neurol 1987; 44: 21-23
  • 7 Fazekas F, Kleinert R, Offenbacher H et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993; 43: 1683-1689
  • 8 Wardlaw JM. Blood-brain barrier and cerebral small vessel disease. J Neurol Sci 2010; 299: 66-71
  • 9 Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689-701
  • 10 Fornage M, Debette S, Bis JC et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol 2011; 69: 928-939
  • 11 Atwood L, Wolf P, Heard-Costa N et al. Genetic variation in white matter hyperintensity volume in the Framingham Study. Stroke 2004; 35: 1609-1613
  • 12 Wardlaw JM, Allerhand M, Doubal FN et al. Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities. Neurology 2014; 82: 1331-1338
  • 13 Fazekas F, Kleinert R, Offenbacher H et al. The morphologic correlate of incidental punctate white matter hyperintensities on MR images. AJNR Am J Neuroradiol 1991; 12: 915-921
  • 14 Gouw AA, Seewann A, van der Flier WM et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 2011; 82: 126-135
  • 15 Enzinger C, Smith S, Fazekas F et al. Lesion probability maps of white matter hyperintensities in elderly individuals: results of the Austrian stroke prevention study. J Neurol 2006; 253: 1064-1070
  • 16 Fazekas F, Barkhof F, Filippi M et al. The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology 1999; 53: 448-456
  • 17 Charil A, Yousry T, Rovaris M et al. MRI and the diagnosis of multiple sclerosis: expanding the concept of “no better explanation”. Lancet Neurol 2006; 5: 841-852
  • 18 Auer DP, Putz B, Gossl C et al. Differential lesion patterns in CADASIL and sporadic subcortical arteriosclerotic encephalopathy: MR imaging study with statistical parametric group comparison. Radiology 2001; 218: 443-451
  • 19 Chabriat H, Joutel A, Dichgans M et al. Cadasil. Lancet Neurol 2009; 8: 643-653
  • 20 Poggesi A, Pantoni L, Inzitari D et al. 2001–2011: A Decade of the LADIS (Leukoaraiosis And DISability) Study: What Have We Learned about White Matter Changes and Small-Vessel Disease?. Cerebrovasc Dis 2011; 32: 577-588
  • 21 Inzitari D, Simoni M, Pracucci G et al. Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes: the LADIS study. Arch Intern Med 2007; 167: 81-88
  • 22 Inzitari D, Pracucci G, Poggesi A et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ 2009; 339: b2477
  • 23 Fazekas F, Chawluk JB, Alavi A et al. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. Am J Roentgenol Am J Roentgenol 1987; 149: 351-356
  • 24 Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010; 341: c3666
  • 25 Schmidt R, Ropele S, Ferro J et al. Diffusion-weighted imaging and cognition in the leukoariosis and disability in the elderly study. Stroke 2010; 41: e402-e408
  • 26 Ropele S, Seewann A, Gouw A et al. Quantitation of brain tissue changes associated with white matter hyperintensities by diffusion-weighted and magnetization transfer imaging: the LADIS (Leukoaraiosis and Disability in the Elderly) Study. J Magn Reson Imaging 2008; 29: 268-274
  • 27 Gouw AA, van der Flier WM, Fazekas F et al. Progression of white matter hyperintensities and incidence of new lacunes over a 3-year period: the Leukoaraiosis and Disability study. Stroke 2008; 39: 1414-1420
  • 28 Maillard P, Carmichael O, Harvey D et al. FLAIR and Diffusion MRI Signals Are Independent Predictors of White Matter Hyperintensities. AJNR Am J Neuroradiol 2013; 34: 54-61
  • 29 Benisty S, Gouw AA, Porcher R et al. Location of lacunar infarcts correlates with cognition in a sample of non-disabled subjects with age-related white-matter changes: the LADIS study. J Neurol Neurosurg Psychiatry 2009; 80: 478-483
  • 30 Jokinen H, Gouw AA, Madureira S et al. Incident lacunes influence cognitive decline: the LADIS study. Neurology 2011; 76: 1872-1878
  • 31 Schmidt R, Grazer A, Enzinger C et al. MRI-detected white matter lesions: do they really matter?. J Neural Transm 2011; 118: 673-681
  • 32 Linortner P, Fazekas F, Schmidt R et al. White matter hyperintensities alter functional organization of the motor system. Neurobiol Aging 2012; 197: e1-e9
  • 33 Lindley RI, Wang JJ, Wong MC et al. Retinal microvasculature in acute lacunar stroke: a cross-sectional study. Lancet Neurol 2009; 8: 628-634
  • 34 Ikram MA, Vernooij MW, Hofman A et al. Kidney function is related to cerebral small vessel disease. Stroke 2008; 39: 55-61
  • 35 Hacke W, Kaste M, Bluhmki E et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008; 359: 1317-1329
  • 36 Álvarez-Sabín J, Maisterra O, Santamarina E et al. Factors influencing haemorrhagic transformation in ischaemic stroke. Lancet Neurol 2013; 12: 689-705
  • 37 Palumbo V, Boulanger JM, Hill MD et al. Leukoaraiosis and intracerebral hemorrhage after thrombolysis in acute stroke. Neurology 2007; 68: 1020-1024
  • 38 Neumann-Haefelin T, Hoelig S, Berkefeld J et al. Leukoaraiosis is a risk factor for symptomatic intracerebral hemorrhage after thrombolysis for acute stroke. Stroke 2006; 37: 2463-2466
  • 39 Pantoni L, Fierini F, Poggesi A. Thrombolysis in acute stroke patients with cerebral small vessel disease. Cerebrovasc Dis 2014; 37: 5-13
  • 40 Shi ZS, Loh Y, Liebeskind DS et al. Leukoaraiosis predicts parenchymal hematoma after mechanical thrombectomy in acute ischemic stroke. Stroke 2012; 43: 1806-1811
  • 41 Gratz PP, El-Koussy M, Hsieh K et al. Preexisting Cerebral Microbleeds on Susceptibility-Weighted Magnetic Resonance Imaging and Post-Thrombolysis Bleeding Risk in 392 Patients. Stroke 2014; [Epub ahead of print]
  • 42 Shoamanesh A, Kwok CS, Lim PA et al. Postthrombolysis intracranial hemorrhage risk of cerebral microbleeds in acute stroke patients: a systematic review and meta-analysis. Int J Stroke 2013; 8: 348-356
  • 43 Gorter JW. Major bleeding during anticoagulation after cerebral ischemia: patterns and risk factors. Stroke Prevention In Reversible Ischemia Trial (SPIRIT). European Atrial Fibrillation Trial (EAFT) study groups. Neurology 1999; 53: 1319-1327
  • 44 Smith EE, Rosand J, Knudsen KA et al. Leukoaraiosis is associated with warfarin-related hemorrhage following ischemic stroke. Neurology 2002; 59: 193-197
  • 45 Lee SH, Ryu WS, Roh JK. Cerebral microbleeds are a risk factor for warfarin-related intracerebral hemorrhage. Neurology 2009; 72: 171-176