Ultraschall Med 2014; 35(03): 229-236
DOI: 10.1055/s-0034-1366353
Review
© Georg Thieme Verlag KG Stuttgart · New York

Combined First Trimester Screening and Cell-Free Fetal DNA – “Next Generation Screening”

Kombiniertes Ersttrimesterscreening und zellfreie fetale DNA – „Next Generation Screening“
K. O. Kagan
1   Department of obstetrics and gynaecology, University of Tuebingen
,
B. Eiben
2   Institute for clinical genetics and laboratory medicine, Amedes Group, Essen
,
P. Kozlowski
3   Prenatal medicine and genetics Duesseldorf, praenatal.de, Duesseldorf
› Institutsangaben
Weitere Informationen

Publikationsverlauf

16. Juli 2013

17. Februar 2014

Publikationsdatum:
24. April 2014 (online)

Abstract

In the last decades, prenatal screening for aneuploidy has become increasingly effective. While first trimester combined screening is considered to be the current gold standard, the use of cell-free fetal DNA (cffDNA), which is also called noninvasive prenatal testing (NIPT), will result in a change of paradigm. Respective studies indicate that in screening for trisomy 21, the detection and false-positive rates are 99 % and 0.1 %, respectively. For trisomies 18 and 13, there is less evidence but recent studies report detection rates of 98 % and 86 %. Despite the excellent results in screening for trisomy 21, NIPT should not be considered as a diagnostic test. Due to the costs of NIPT, it is unlikely that NIPT will be applied in the near future in population-based screening for trisomy. In addition, the scope of the current approach in first trimester screening exceeds the screening for aneuploidy as it is possible to assess the risk for various pregnancy complications. Therefore, a combination of both NIPT and first trimester combined screening seems reasonable. Both examinations could be applied in a contingent model where the latter is offered to everyone and NIPT is restricted to women with an intermediate risk after first trimester combined screening. Such a policy would result in a detection rate of about 97 % for a false-positive rate of about 1 %. While NIPT currently focuses on screening for trisomy 21, 18, 13 and sex chromosomal abnormalities, the scope of NIPT will soon become broader. In this respect, some study groups have managed to examine the whole fetal genome within the course of the pregnancy. However, moral and ethical considerations need to be taken into account.

Zusammenfassung

In den vergangenen Jahrzehnten wurden zunehmend komplexere und effektivere Methoden im pränatalen Screening auf Chromosomenstörungen entwickelt. Während heute noch das kombinierte Ersttrimesterscreening als Goldstandard betrachtet wird, ist in baldiger Zukunft durch den Einsatz der zellfreien fetalen DNA (cffDNA) im Sinne eines „non-invasive prenatal testing“ (NIPT) ein Paradigmenwechsel zu erwarten. Diesbezügliche Studien verweisen auf eine Detektionsrate von etwa 99 % für Trisomie 21 bei einer Falsch-Positiv-Rate von 0,1 %. Die Studienlage für Trisomie 18 und 13 ist erheblich dünner, wobei die Detektionsraten derzeit bei etwa 98 und 86 % liegen. Trotz der guten Testgüte im Hinblick auf das Screening auf Trisomie 21 darf der Test auch weiterhin nicht als diagnostischer Test verstanden werden. Aufgrund der derzeit noch hohen Kosten der Untersuchung ist eine flächenhafte Anwendung noch nicht sinnvoll. Zudem beschränkt sich das heutige Ersttrimesterscreening nicht nur auf ein Aneuploidiescreening sondern erlaubt die Beurteilung zahlreicher schwangerschaftsspezifischer Risiken. Insofern ist eine kombinierte Anwendung beider Untersuchungen sinnvoll. Diese könnte beispielsweise gestaffelt erfolgen. Zunächst würde ein kombiniertes Ersttrimesterscreening erfolgen, welches bei einem intermediären Risiko durch die NIPT-Untersuchung erweitert wird. Dadurch läge die Detektionsrate für Trisomie 21 bei etwa 97 % bei einer Falsch-Positv-Rate von etwa 1 %. Während sich die NIPT-Untersuchung derzeit noch auf das Screening auf Trisomie 21, 18, 13 und gonosomale Aberrationen konzentriert, ist in der Zukunft eine deutliche Erweiterung des Untersuchungsspektrums zu erwarten. So ist es einzelnen Arbeitsgruppen in der Schwangerschaft bereits gelungen, das gesamte Genom mittels cffDNA-Analysen zu entschlüsseln. Dabei dürfen moralische und ethische Aspekte aber nicht außer Acht gelassen werden.

 
  • Literatur

  • 1 Holzgreve W, Garritsen HS, Ganshirt-Ahlert D. Fetal cells in the maternal circulation. J Reprod Med 1992; 37: 410-418
  • 2 Bianchi DW, Simpson JL, Jackson LG. et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat Diagn 2002; 22: 609-615
  • 3 Lo YM, Corbetta N, Chamberlain PF. et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350: 485-487
  • 4 Lo YMD, Chan KCA, Sun H. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2010 2. 61ra91
  • 5 Lo YM, Tein MS, Lau TK. et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 1998; 62: 768-775
  • 6 Fan HC, Gu W, Wang J. et al. Non-invasive prenatal measurement of the fetal genome. Nature 2012; 487: 320-324
  • 7 Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet 2010; 11: 31-46
  • 8 Stumm M, Entezami M, Trunk N. et al. Noninvasive prenatal detection of chromosomal aneuploidies using different next generation sequencing strategies and algorithms. Prenat Diagn 2012; 32: 569-577
  • 9 Sparks AB, Wang ET, Struble CA. et al. Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy. Prenat Diagn 2012; 32: 3-9
  • 10 Palomaki GE, Kloza EM, Lambert-Messerlian GM. et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med 2011; 13: 913-920
  • 11 Bianchi DW, Platt LD, Goldberg JD. et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet Gynecol 2012; 119: 890-901
  • 12 Chiu RWK, Chan KCA, Gao Y. et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proceedings of the National Academy of Sciences. National Acad Sciences 2008; 105: 20458-20463
  • 13 Nicolaides KH, Syngelaki A, Ashoor G. et al. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am J Obstet Gynecol 2012; 207: 374.e1-374.e6
  • 14 Dhallan R, Guo X, Emche S. et al. A non-invasive test for prenatal diagnosis based on fetal DNA present in maternal blood: a preliminary study. Lancet 2007; 369: 474-481
  • 15 Zimmermann B, Hill M, Gemelos G. et al. Noninvasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci. Prenat Diagn 2012; 32: 1233-1241
  • 16 Kitzman JO, Snyder MW, Ventura M. et al. Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med 2012 4. 137ra76
  • 17 Kagan KO, Staboulidou I, Syngelaki A. et al. The 11–13-week scan: diagnosis and outcome of holoprosencephaly, exomphalos and megacystis. Ultrasound Obstet Gynecol 2010; 36: 10-14
  • 18 Norton ME, Brar H, Weiss J. et al. Non-Invasive Chromosomal Evaluation (NICE) Study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18. Am J Obstet Gynecol 2012; 207: 137.e1-8
  • 19 Ashoor G, Syngelaki A, Wagner M. et al. Chromosome-selective sequencing of maternal plasma cell-free DNA for first-trimester detection of trisomy 21 and trisomy 18. Am J Obstet Gynecol 2012; 206: 322.e1-5
  • 20 Palomaki GE, Deciu C, Kloza EM. et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study. Genet Med 2012; 14: 296-305
  • 21 Ashoor G, Syngelaki A, Wang E. et al. Trisomy 13 detection in the first trimester of pregnancy using a chromosome-selective cell-free DNA analysis method. Ultrasound Obstet Gynecol 2013; 41: 21-25
  • 22 Gesetz über genetische Untersuchungen bei Menschen (Gendiagnostikgesetz – GenDG). http://www.gesetze-im-internet.de/bundesrecht/gendg/gesamt.pdf Aufgerufen am 7.12.2013
  • 23 Grati FR, Barlocco A, Grimi B. et al. Chromosome abnormalities investigated by non-invasive prenatal testing account for approximately 50% of fetal unbalances associated with relevant clinical phenotypes. Am J Med Genet 2010; 152A: 1434-1442
  • 24 Fairbrother G, Johnson S, Musci TJ. et al. Clinical experience of noninvasive prenatal testing with cell-free DNA for fetal trisomies 21, 18, and 13, in a general screening population. Prenat Diagn 2013; 33: 580-583
  • 25 Mulvey S, Wallace EM. Women’s knowledge of and attitudes to first and second trimester screening for Down’s syndrome. BJOG: An Internal Journal of Obs Gyn 2000; 107: 1302-1305
  • 26 Eiben B, Hall M, Ludwig M. et al. Ein neuer nichtinvasiver Pränataltest. Frauenarzt 2013; 54: 768-770
  • 27 Eiben B, Thode C, Merz E. Nichtinvasive Pränataldiagnostik Serumtestsysteme zur Erfassung von Chromosomenanomalien. Gynäkologie+ Geburtshilfe 2013; 18: 34-37
  • 28 Eiben B, Glaubitz R, Merz E. Trisomie-21-Analyse aus mütterlichem Blut. Frauenarzt 2012; 53: 834-835
  • 29 Tercanli S, Vial Y, Merz E. Nicht invasiver Chromosomentest wirft neue Fragen in der Pränataldiagnostik nach der Bedeutung des Ultraschalls und Fragen nach neuen Screeningstrategien auf. Ultraschall in Med 2013; 34: 417-420
  • 30 Stellungnahme der Deutschen Gesellschaft für Humangenetik (GfH) zur Analyse fetaler DNA aus dem mütterlichen Blut. http://www.gfhev.de/de/leitlinien/LL_ und_Stellungnahmen/2012_11_12_GfH_Stellungnahme_Analyse_fetale_ DNA.pdf Aufgerufen am 7.12.2013
  • 31 Cuckle H, Benn P, Pergament E. Maternal cfDNA screening for Down syndrome – a cost sensitivity analysis. Prenat Diagn 2013; 33: 636-642
  • 32 Nicolaides KH, Spencer K, Avgidou K. et al. Multicenter study of first-trimester screening for trisomy 21 in 75 821 pregnancies: results and estimation of the potential impact of individual risk-orientated two-stage first-trimester screening. Ultrasound Obstet Gynecol 2005; 25: 221-226
  • 33 Merz E, Thode C, Eiben B. et al. Individualized correction for maternal weight in calculating the risk of chromosomal abnormalities with first-trimester screening data. Ultraschall in Med 2011; 32: 33-39
  • 34 Eiben B, Thode C, Merz E. Das Ersttrimesterscreening und die neue Risikoberechnungsoftware der Fetal Medicine Foundation Deutschland. medgen Springer-Verlag 2011; 23: 453-456
  • 35 Kagan KO, Cicero S, Staboulidou I. et al. Fetal nasal bone in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet Gynecol 2009; 33: 259-264
  • 36 Kagan KO, Valencia C, Livanos P. et al. Tricuspid regurgitation in screening for trisomies 21, 18 and 13 and Turner syndrome at 11 + 0 to 13 + 6 weeks of gestation. Ultrasound Obstet Gynecol 2009; 33: 18-22
  • 37 Maiz N, Valencia C, Kagan KO. et al. Ductus venosus Doppler in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet Gynecol 2009; 33: 512-517
  • 38 Kagan K, Hoopmann M, Kozlowski P. Assessment of Foetal DNA in Maternal Blood – A Useful Tool in the Hands of Prenatal Specialists. Geburtsh Frauenheilk 2012; 72: 998-1003
  • 39 Kagan KO, Etchegaray A, Zhou Y. et al. Prospective validation of first-trimester combined screening for trisomy 21. Ultrasound Obstet Gynecol 2009; 34: 14-18
  • 40 Nicolaides KH. Chitty LS, Lau TK. editors A model for a new pyramid of prenatal care based on the 11 to 13 weeks' assessment. Prenat Diagn 2011; 31: 3-6
  • 41 Ashoor G, Syngelaki A, Poon LCY. et al. Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks’ gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol 2013; 41: 26-32
  • 42 Salomon LJ, Alfirevic Z, Bilardo CM. et al. ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 2013; 41: 102-113
  • 43 Akolekar R, Syngelaki A, Sarquis R. Chitty LS, Lau TK. et al. editors Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks. Prenat Diagn 2011; 31: 66-74
  • 44 Nanda S, Akolekar R, Sarquis R. et al. Maternal serum adiponectin at 11 to 13 weeks of gestation in the prediction of macrosomia. Prenat Diagn 2011; 31: 479-483
  • 45 Kagan KO, Hoopmann M, Abele H. et al. First-trimester combined screening for trisomy 21 with different combinations of placental growth factor, free β-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol 2012; 40: 530-535
  • 46 Poon LCY, Musci T, Song K. et al. Maternal plasma cell-free fetal and maternal DNA at 11–13 weeks’ gestation: relation to fetal and maternal characteristics and pregnancy outcomes. Fetal Diagn Ther 2013; 33: 215-223
  • 47 Papantoniou N, Bagiokos V, Agiannitopoulos K. et al. RASSF1A in maternal plasma as a molecular marker of preeclampsia. Prenat Diagn 2013; 33: 682-687
  • 48 Wang E, Batey A, Struble C. et al. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn 2013; 33: 662-666
  • 49 Canick JA, Palomaki GE, Kloza EM. Chitty LS, Bianchi DW. et al. editors The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn 2013; 33: 667-674
  • 50 Chitty LS. Fetal nuchal translucency scan and early prenatal diagnosis of chromosomal abnormalities by rapid aneuploidy screening: observational study. BMJ 2006; 332: 452-455
  • 51 Osborne CM, Hardisty E, Devers P. et al. Discordant noninvasive prenatal testing results in a patient subsequently diagnosed with metastatic disease. Prenat Diagn 2013; 33: 609-611
  • 52 Huang X, Zheng J, Chen M. et al. Noninvasive prenatal testing of trisomies 21 and 18 by massively parallel sequencing of maternal plasma DNA in twin pregnancies. Prenat Diagn 2013 Dec, in press
  • 53 Liang D, Lv W, Wang H. et al. Non-invasive prenatal testing of fetal whole chromosome aneuploidy by massively parallel sequencing. Prenat Diagn 2013; 33: 409-415
  • 54 Mazloom AR, Džakula Z, Oeth P. et al. Noninvasive prenatal detection of sex chromosomal aneuploidies by sequencing circulating cell-free DNA from maternal plasma. Prenat Diagn 2013; 33: 591-597
  • 55 Abruzzo MA, Mayer M, Jacobs PA. Aging and aneuploidy: evidence for the preferential involvement of the inactive X chromosome. Cytogenet Cell Genet 1985; 39: 275-278
  • 56 Nicolaides KH, Syngelaki A, Del Mar GilM. et al. Prenatal Detection of Fetal Triploidy from Cell-Free DNA Testing in Maternal Blood. Fetal Diagn Ther 2013 Oct, in press
  • 57 Chen S, Ge H, Wang X. et al. Haplotype-assisted accurate non-invasive fetal whole genome recovery through maternal plasma sequencing. Genome Med 2013; 5: 18
  • 58 Chen S, Lau TK, Zhang C. et al. A method for noninvasive detection of fetal large deletions/duplications by low coverage massively parallel sequencing. Prenat Diagn 2013; 33: 584-590
  • 59 Evans MI, Wright DA, Pergament E. et al. Digital PCR for noninvasive detection of aneuploidy: power analysis equations for feasibility. Fetal Diagn Ther 2012; 31: 244-247
  • 60 Poon LLM, Leung TN, Lau TK. et al. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clinical Chemistry 2002; 48: 35-41
  • 61 Papageorgiou EA, Karagrigoriou A, Tsaliki E. et al. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 2011; 17: 510-513
  • 62 Kyriakou S, Kypri E, Spyrou C. et al. Variability of ffDNA in maternal plasma does not prevent correct classification of trisomy 21 using MeDIP-qPCR methodology. Prenat Diagn 2013; 33: 650-655
  • 63 CellScape. http://www.cellscapecorp.com/?page_id=1959 Aufgerufen am 12.7.2013
  • 64 Skirton H, Patch C. Chitty LS, Bianchi DW. editors Factors affecting the clinical use of non-invasive prenatal testing: a mixed methods systematic review. Prenat Diagn 2013; 33: 532-541
  • 65 Kelly SE, Farrimond HR. Non-invasive prenatal genetic testing: a study of public attitudes. Public Health Genomics 2012; 15: 73-81
  • 66 Allyse MA, Sayres LC, Havard M. et al. Best ethical practices for clinicians and laboratories in the provision of noninvasive prenatal testing. Prenat Diagn 2013; 33: 656-661
  • 67 Guedj F, Bianchi DW. Noninvasive prenatal testing creates an opportunity for antenatal treatment of Down syndrome. Prenat Diagn 2013; 33: 614-618
  • 68 Deans Z, Hill M, Chitty LS. et al. Non-invasive prenatal testing for single gene disorders: exploring the ethics. Eur J Hum Genet Nature Publishing Group 2012; 21: 713-718
  • 69 Ehrich M, Deciu C, Zwiefelhofer T. et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol 2011; 204: e1-e11
  • 70 Song Y, Liu C, Qi H. et al. Noninvasive prenatal testing of fetal aneuploidies by massively parallel sequencing in a prospective Chinese population. Prenat Diagn 2013; 33: 700-706
  • 71 Dan S, Wang W, Ren J. et al. Clinical application of massively parallel sequencing-based prenatal noninvasive fetal trisomy test for trisomies 21 and 18 in 11,105 pregnancies with mixed risk factors. Prenat Diagn 2012; 32: 1225-1232
  • 72 Cuckle H, Benn P, Wright D. Down Syndrome Screening in the First and/or Second Trimester: Model Predicted Performance Using Meta-Analysis Parameters. Seminars in Perinatology 2005; 29: 252-257
  • 73 Wright D, Spencer K, Kagan KK. et al. First-trimester combined screening for trisomy 21 at 7–14 weeks' gestation. Ultrasound Obstet Gynecol 2010; 36: 404-411