Am J Perinatol 2014; 31(09): 773-780
DOI: 10.1055/s-0033-1361831
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Renal Development and Neonatal Adaptation

M. Saint-Faust
1   Department of Neonatology, Universitary Hospital, Nice, France
,
F. Boubred
2   Department of Neonatology, Universitary Hospital, La Conception and Aix-Marseille University, Marseille, France
,
U. Simeoni
2   Department of Neonatology, Universitary Hospital, La Conception and Aix-Marseille University, Marseille, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

07. Dezember 2012

27. September 2013

Publikationsdatum:
12. März 2014 (online)

Abstract

The structural and functional development of the kidney is responsible for a significant impact on postnatal adaptation to extrauterine life. Prenatal or neonatal impairment of nephrogenesis may carry long term, lifelong consequences in terms of reduced nephron endowment, chronic kidney disease, and cardiovascular risks at adulthood. Intrauterine growth restriction, preterm birth, congenital renal, and urinary tract anomalies are for long widely incriminated. Neonatal administration of nephrotoxic drugs has been associated with short-term acute kidney injury and longer chronic kidney disease. This review attempts at offering a comprehensive understanding of the renal development, the neonatal renal transition to extrauterine life and subsequent maturation phase during early infancy. It also focuses on developmental and maturational changes that impact lifelong renal function and adult health.

 
  • References

  • 1 Faa G, Gerosa C, Fanni D , et al. Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol 2012; 227 (3) 1257-1268
  • 2 Gao X, Chen X, Taglienti M, Rumballe B, Little MH, Kreidberg JA. Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. Development 2005; 132 (24) 5437-5449
  • 3 Tufro A, Norwood VF, Carey RM, Gomez RA. Vascular endothelial growth factor induces nephrogenesis and vasculogenesis. J Am Soc Nephrol 1999; 10 (10) 2125-2134
  • 4 Saxen L. Organogenesis of the kidney. In: Barlow PW, Green PB, White CC, eds. Developmental and Cell Biology Series. Cambrige, CA: Cambrige University Press; 1987
  • 5 Merlet-Bénichou C, Gilbert T, Vilar J, Moreau E, Freund N, Lelièvre-Pégorier M. Nephron number: variability is the rule. Causes and consequences. Lab Invest 1999; 79 (5) 515-527
  • 6 Chevalier RL. Developmental renal physiology of the low birth weight pre-term newborn. J Urol 1996; 156 (2 Pt 2) 714-719
  • 7 Burrow CR. Regulatory molecules in kidney development. Pediatr Nephrol 2000; 14 (3) 240-253
  • 8 Dinchuk JE, Car BD, Focht RJ , et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 1995; 378 (6555) 406-409
  • 9 McGrath-Morrow S, Cho C, Molls R , et al. VEGF receptor 2 blockade leads to renal cyst formation in mice. Kidney Int 2006; 69 (10) 1741-1748
  • 10 Quan A. Fetopathy associated with exposure to angiotensin converting enzyme inhibitors and angiotensin receptor antagonists. Early Hum Dev 2006; 82 (1) 23-28
  • 11 Brophy PD, Robillard JE. Functional development of the kidney in utero. In: Polin RA, Fox WW, Abman SW, eds. Fetal and neonatal physiology, 3th ed. Philadelphia, PA: W.B. Saunders; 2004: 1229-1239
  • 12 Khan KN, Stanfield KM, Dannenberg A , et al. Cyclooxygenase-2 expression in the developing human kidney. Pediatr Dev Pathol 2001; 4 (5) 461-466
  • 13 Hoster M. Embryonic epithelial membranes transporters. Am J Physiol 2000; 279: F982-F996
  • 14 Nielsen S, Frøkiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 2002; 82 (1) 205-244
  • 15 Solhaug MJ, Jose PA. Postnatal maturation of renal blood flow. In: Polin RA, Fox WW, Abman SW, eds. Fetal and Neonatal Physiology, 3rd ed. Philadephia, PA: W.B. Saunders; 2004: 1243-1249
  • 16 Guignard J. Agression et protection du rein immature. In: Médicaments. Néphrotoxicité. Insuffisance rénale chez le nouveau-né, E.SAS, editor. Elsevier SAS; 2001: 85-94
  • 17 Guignard JP, Torrado A, Da Cunha O, Gautier E. Glomerular filtration rate in the first three weeks of life. J Pediatr 1975; 87 (2) 268-272
  • 18 Thayyil S, Sheik S, Kempley ST, Sinha A. A gestation- and postnatal age-based reference chart for assessing renal function in extremely premature infants. J Perinatol 2008; 28 (3) 226-229
  • 19 Tsampalieros A, Lepage N, Feber J. Intraindividual variability of the modified Schwartz and novel CKiD GFR equations in pediatric renal transplant patients. Pediatr Transplant 2011; 15 (7) 760-765
  • 20 Hoseini R, Otukesh H, Rahimzadeh N, Hoseini S. Glomerular function in neonates. Iran J Kidney Dis 2012; 6 (3) 166-172
  • 21 Armangil D, Yurdakök M, Canpolat FE, Korkmaz A, Yiğit S, Tekinalp G. Determination of reference values for plasma cystatin C and comparison with creatinine in premature infants. Pediatr Nephrol 2008; 23 (11) 2081-2083
  • 22 Gallini F, Maggio L, Romagnoli C, Marrocco G, Tortorolo G. Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr Nephrol 2000; 15 (1-2) 119-124
  • 23 Madsen K, Tinning AR, Marcussen N, Jensen BL. Postnatal development of the renal medulla; role of the reninangiotensin system. Acta Physiol (Oxf) 2013; 208 (1) 41-49
  • 24 Boubred F, Vendemmia M, Garcia-Meric P, Buffat C, Millet V, Simeoni U. Effects of maternally administered drugs on the fetal and neonatal kidney. Drug Saf 2006; 29 (5) 397-419
  • 25 Cattarelli D, Chirico G, Simeoni U. Renal effects of antenatally or postnatally administered steroids. Pediatr Med Chir 2002; 24 (2) 157-162
  • 26 Tendron A, Decramer S, Justrabo E, Gouyon JB, Semama DS, Gilbert T. Cyclosporin A administration during pregnancy induces a permanent nephron deficit in young rabbits. J Am Soc Nephrol 2003; 14 (12) 3188-3196
  • 27 Cochat P, Decramer S, Robert-Gnansia E, Dubourg L, Audra P. Renal outcome of children exposed to cyclosporine in utero. Transplant Proc 2004; 36 (2, Suppl) 208S-210S
  • 28 Drukker A, Guignard JP. Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr 2002; 14 (2) 175-182
  • 29 Rodríguez MM, Gómez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 2004; 7 (1) 17-25
  • 30 Ligi I, Boubred F, Grandvuillemin I, Simeoni U. The neonatal kidney: implications for drug metabolism and elimination. Curr Drug Metab 2013; 14 (2) 174-177
  • 31 Giniger RP, Buffat C, Millet V, Simeoni U. Renal effects of ibuprofen for the treatment of patent ductus arteriosus in premature infants. J Matern Fetal Neonatal Med 2007; 20 (4) 275-283
  • 32 Cuzzolin L, Fanos V, Pinna B , et al. Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions. Pediatr Nephrol 2006; 21 (7) 931-938
  • 33 Sweet D, Bevilacqua G, Carnielli V , et al; Working Group on Prematurity of the World Association of Perinatal Medicine; European Association of Perinatal Medicine. European consensus guidelines on the management of neonatal respiratory distress syndrome. J Perinat Med 2007; 35 (3) 175-186
  • 34 Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other?. Am J Hypertens 1988; 1 (4 Pt 1) 335-347
  • 35 Luyckx VA, Brenner BM. The clinical importance of nephron mass. J Am Soc Nephrol 2010; 21 (6) 898-910
  • 36 Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med 2003; 348 (2) 101-108
  • 37 Puddu M, Fanos V, Podda F, Zaffanello M. The kidney from prenatal to adult life: perinatal programming and reduction of number of nephrons during development. Am J Nephrol 2009; 30 (2) 162-170