Semin Reprod Med 2014; 32(01): 014-022
DOI: 10.1055/s-0033-1361818
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Microbiome and Development: A Mother's Perspective

Amanda L. Prince
1   Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine
,
Kathleen M. Antony
1   Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine
,
Jun Ma
1   Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine
2   Department of Molecular and Human Genetics, Bioinformatics Research Lab, Baylor College of Medicine, Houston, Texas
,
Kjersti M. Aagaard
1   Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine
2   Department of Molecular and Human Genetics, Bioinformatics Research Lab, Baylor College of Medicine, Houston, Texas
3   Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
› Author Affiliations
Further Information

Publication History

Publication Date:
03 January 2014 (online)

Abstract

Dysbiosis of the microbiome has been associated with type II diabetes mellitus, obesity, inflammatory bowel disorders, and colorectal cancer, and recently, the Human Microbiome Project Consortium has helped to define a healthy microbiome. Now research has begun to investigate how the microbiome is established, and in this article, we will discuss the maternal influences on the establishment of the microbiome. The inoculation of an individual's microbiome is highly dependent on the maternal microbiome, and changes occur in the maternal microbiome during pregnancy that may help to shape the neonatal microbiome. Further, we consider how mode of delivery may shape the developing microbiome of a neonate, and we end by discussing how the microbiome may impact preterm birth and the possibility of bacterial colonization of the placenta. Although the current literature demonstrates that the transformation of the maternal microbiome during pregnancy effects the establishment of the neonatal microbiome, further research is needed to explore how the microbiome shapes our metabolism and developing immune system.

 
  • References

  • 1 Larsen N, Vogensen FK, van den Berg FWJ , et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010; 5 (2) e9085
  • 2 Wu X, Ma C, Han L , et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 2010; 61 (1) 69-78
  • 3 Qin J, Li Y, Cai Z , et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490 (7418) 55-60
  • 4 Cani PD, Neyrinck AM, Fava F , et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50 (11) 2374-2383
  • 5 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444 (7122) 1027-1031
  • 6 Joossens M, Huys G, Cnockaert M , et al. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut 2011; 60 (5) 631-637
  • 7 Wang T, Cai G, Qiu Y , et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 2012; 6 (2) 320-329
  • 8 Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007; 104 (3) 979-984
  • 9 Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102 (31) 11070-11075
  • 10 Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008; 3 (4) 213-223
  • 11 Turnbaugh PJ, Hamady M, Yatsunenko T , et al. A core gut microbiome in obese and lean twins. Nature 2009; 457 (7228) 480-484
  • 12 Schwiertz A, Taras D, Schäfer K , et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010; 18 (1) 190-195
  • 13 Sobhani I, Tap J, Roudot-Thoraval F , et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 2011; 6 (1) e16393
  • 14 Lepage P, Häsler R, Spehlmann ME , et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011; 141 (1) 227-236
  • 15 Manichanh C, Rigottier-Gois L, Bonnaud E , et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006; 55 (2) 205-211
  • 16 Willing B, Halfvarson J, Dicksved J , et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis 2009; 15 (5) 653-660
  • 17 Mangin I, Bonnet R, Seksik P , et al. Molecular inventory of faecal microflora in patients with Crohn's disease. FEMS Microbiol Ecol 2004; 50 (1) 25-36
  • 18 Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJO. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J Clin Microbiol 2006; 44 (11) 4136-4141
  • 19 Aagaard K, Petrosino J, Keitel W , et al. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J 2013; 27 (3) 1012-1022
  • 20 Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486 (7402) 207-214
  • 21 Human Microbiome Project Consortium. A framework for human microbiome research. Nature 2012; 486 (7402) 215-221
  • 22 Huse SM, Ye Y, Zhou Y, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 2012; 7 (6) e34242
  • 23 Jumpstart Consortium Human Microbiome Project Data Generation Working Group. Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS ONE 2012; 7 (6) e39315
  • 24 Li K, Bihan M, Yooseph S, Methé BA. Analyses of the microbial diversity across the human microbiome. PLoS ONE 2012; 7 (6) e32118
  • 25 Aagaard K, Riehle K, Ma J , et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 2012; 7 (6) e36466
  • 26 Koren O, Goodrich JK, Cullender TC , et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012; 150 (3) 470-480
  • 27 Schultz M, Göttl C, Young RJ, Iwen P, Vanderhoof JA. Administration of oral probiotic bacteria to pregnant women causes temporary infantile colonization. J Pediatr Gastroenterol Nutr 2004; 38 (3) 293-297
  • 28 Spurbeck RR, Arvidson CG. Lactobacillus jensenii surface-associated proteins inhibit Neisseria gonorrhoeae adherence to epithelial cells. Infect Immun 2010; 78 (7) 3103-3111
  • 29 Hillier SL, Krohn MA, Klebanoff SJ, Eschenbach DA. The relationship of hydrogen peroxide-producing lactobacilli to bacterial vaginosis and genital microflora in pregnant women. Obstet Gynecol 1992; 79 (3) 369-373
  • 30 Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS 2008; 22 (12) 1493-1501
  • 31 Pridmore RD, Berger B, Desiere F , et al. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 2004; 101 (8) 2512-2517
  • 32 Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 2008; 88 (4) 894-899
  • 33 Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play?. Nat Rev Gastroenterol Hepatol 2012; 9 (4) 219-230
  • 34 Sokol H, Pigneur B, Watterlot L , et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008; 105 (43) 16731-16736
  • 35 Dominguez-Bello MG, Costello EK, Contreras M , et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010; 107 (26) 11971-11975
  • 36 Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G. Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr 2008; 138 (9) 1796S-1800S
  • 37 Azad MB, Konya T, Maughan H , et al; CHILD Study Investigators. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 2013; 185 (5) 385-394
  • 38 Penders J, Thijs C, Vink C , et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006; 118 (2) 511-521
  • 39 Grönlund MMM, Salminen SS, Mykkänen HH, Kero PP, Lehtonen OPO. Development of intestinal bacterial enzymes in infants—relationship to mode of delivery and type of feeding. APMIS 1999; 107 (7) 655-660
  • 40 Kero JJ, Gissler MM, Grönlund M-MM , et al. Mode of delivery and asthma—is there a connection?. Pediatr Res 2002; 52 (1) 6-11
  • 41 van Nimwegen FA, Penders J, Stobberingh EE , et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol 2011; 128 (5) 948-955 , e1–e3
  • 42 Grönlund MM, Nuutila J, Pelto L , et al. Mode of delivery directs the phagocyte functions of infants for the first 6 months of life. Clin Exp Immunol 1999; 116 (3) 521-526
  • 43 Oyama N, Sudo N, Sogawa H, Kubo C. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J Allergy Clin Immunol 2001; 107 (1) 153-159
  • 44 Sudo N, Yu XN, Aiba Y , et al. An oral introduction of intestinal bacteria prevents the development of a long-term Th2-skewed immunological memory induced by neonatal antibiotic treatment in mice. Clin Exp Allergy 2002; 32 (7) 1112-1116
  • 45 La Tuga MS, Stuebe A, Seed P. A review of the source and function of microbiota in breast milk. Semin Reprod Med 2014; 35 (1) 68-73
  • 46 Simmons LE, Rubens CE, Darmstadt GL, Gravett MG. Preventing preterm birth and neonatal mortality: exploring the epidemiology, causes, and interventions. Semin Perinatol 2010; 34 (6) 408-415
  • 47 Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med 2000; 342 (20) 1500-1507
  • 48 Gonçalves LF, Chaiworapongsa T, Romero R. Intrauterine infection and prematurity. Ment Retard Dev Disabil Res Rev 2002; 8 (1) 3-13
  • 49 Mulla MJ, Myrtolli K, Tadesse S , et al. Cutting-edge report: TLR10 plays a role in mediating bacterial peptidoglycan-induced trophoblast apoptosis. Am J Reprod Immunol 2013; 69 (5) 449-453
  • 50 Abrahams VM, Bole-Aldo P, Kim YM , et al. Divergent trophoblast responses to bacterial products mediated by TLRs. J Immunol 2004; 173 (7) 4286-4296
  • 51 Nold C, Anton L, Brown A, Elovitz M. Inflammation promotes a cytokine response and disrupts the cervical epithelial barrier: a possible mechanism of premature cervical remodeling and preterm birth. Am J Obstet Gynecol 2012; 206 (3) e1-e7
  • 52 Han YW, Shen T, Chung P, Buhimschi IA, Buhimschi CS. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol 2009; 47 (1) 38-47
  • 53 Greig PC, Herbert WN, Robinette BL, Teot LA. Amniotic fluid interleukin-10 concentrations increase through pregnancy and are elevated in patients with preterm labor associated with intrauterine infection. Am J Obstet Gynecol 1995; 173 (4) 1223-1227
  • 54 Christiansen OB. Reproductive immunology. Mol Immunol 2013; 55 (1) 8-15
  • 55 Zenclussen AC. Adaptive immune responses during pregnancy. Am J Reprod Immunol 2013; 69 (4) 291-303
  • 56 Martinez FF, Cervi L, Knubel CP, Panzetta-Dutari GM, Motran CC. The role of pregnancy-specific glycoprotein 1a (PSG1a) in regulating the innate and adaptive immune response. Am J Reprod Immunol 2013; 69 (4) 383-394
  • 57 Douvier S, Neuwirth C, Filipuzzi L, Kisterman JP. Chorioamnionitis with intact membranes caused by Capnocytophaga sputigena . Eur J Obstet Gynecol Reprod Biol 1999; 83 (1) 109-112
  • 58 Han YW, Ikegami A, Bissada NF, Herbst M, Redline RW, Ashmead GG. Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth. J Clin Microbiol 2006; 44 (4) 1475-1483
  • 59 Bearfield C, Davenport ES, Sivapathasundaram V, Allaker RP. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG 2002; 109 (5) 527-533
  • 60 Han YWY, Redline RWR, Li MM, Yin LL, Hill GBG, McCormick TST. Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth. Infect Immun 2004; 72 (4) 2272-2279
  • 61 Fardini Y, Chung P, Dumm R, Joshi N, Han YW. Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun 2010; 78 (4) 1789-1796
  • 62 Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci U S A 2006; 103 (14) 5478-5483
  • 63 Romero R, Schaudinn C, Kusanovic JP , et al. Detection of a microbial biofilm in intraamniotic infection. Am J Obstet Gynecol 2008; 198 (1) e1-e5
  • 64 Steel JH, Malatos S, Kennea N , et al. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res 2005; 57 (3) 404-411
  • 65 Stout MJ, Conlon B, Landeau M , et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol 2013; 208 (3) e1-e7
  • 66 Chaim W, Mazor M. Intraamniotic infection with fusobacteria. Arch Gynecol Obstet 1992; 251 (1) 1-7
  • 67 Hill GB. Preterm birth: associations with genital and possibly oral microflora. Ann Periodontol 1998; 3 (1) 222-232
  • 68 Treiner E, Duban L, Bahram S , et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003; 422 (6928) 164-169