B&G Bewegungstherapie und Gesundheitssport 2014; 30(02): 66-72
DOI: 10.1055/s-0033-1361576
Wissenschaft
Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG Stuttgart

Messgenauigkeit eines akzelerometerbasierten Multisensorgeräts zur Energieumsatzbestimmung bei normal-, übergewichtigen und adipösen Personen

M Lange
1   Sportwissenschaftliche Fakultät, Institut für Gesundheitssport und Public Health, Universität Leipzig
,
K Eckert
1   Sportwissenschaftliche Fakultät, Institut für Gesundheitssport und Public Health, Universität Leipzig
› Author Affiliations
Further Information

Publication History

Eingegangen: 15 September 2013

Angenommen durch Review: 15 January 2014

Publication Date:
17 April 2014 (online)

Zusammenfassung

Die Untersuchung überprüft die Genauigkeit der Energieumsatzermittlung des SenseWear Pro 3 Armbands (SW3) bei normalgewichtigen, übergewichtigen und adipösen Personen höheren Alters mittels Spirometrie. Insgesamt absolvierten 50 Personen im Alter von 60–82 Jahren 5 standardisierte Aktivitäten (Sitzen, Gehen, Staubsaugen, Radfahren, Treppensteigen), die mithilfe der Spirometrie Metamax 3b (MM3b) und SW3 erfasst wurden. Es zeigte sich, dass die Werte des SW3 bei allen Aktivitäten signifikant unterhalb denen des MM3b lagen. Die Unterschiede wurden mit zunehmender Intensität und steigendem BMI größer. Der Intraklassen-Korrelationskoeffizient (ICC) bestätigte die schwache Übereinstimmung bei 3 der 5 Aktivitäten (Sitzen, Radfahren und Treppensteigen). Bei der zukünftigen Verwendung des SW3 sollte berücksichtigt werden, dass sowohl der BMI als auch die Kontexterkennung von niedrig intensiven Alltagsaktivitäten einen Einfluss auf die Messpräzision zu haben scheinen.

Summary

Measurement accuracy of an accelerometry-based multi-sensor device for determining energy expenditure in normal weight, overweight and obese older persons

The study investigates the accurate determination of energy expenditure of SenseWear Pro 3 armband (SW3) in normal weight, overweight and obese older people in comparison to spirometry. A total of 50 people between 60 and 82 years of age completed five standardized activities (sitting, walking, vacuuming, cycling, stair stepping), which were assessed by spirometry Metamax 3b (MM3b) and SW3. Apparently the SW3 values were significantly lower than those of MM3b in all the five activities. The differences became bigger with increasing level of intensity and rising BMI. The intra-class correlation coefficient (ICC) confirmed the poor agreement in three out of the five activities (sitting, cycling and stair stepping). When using the SW3 in the future it should be considered that both BMI and context recognition of low intense daily routine activities seem to have an impact on measurement accuracy.

 
  • Literatur

  • 1 Abel MG, Hannon JC, Sell K et al. Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults. Appl Physiol Nutr Metabol 2008; 33: 1155-1164
  • 2 Ainsworth B, Haskell W, Hermann S et al. Compendium of Physical Activities: A Second Update of Codes and MET Values. Med Sci Sports Exerc 2011; 43: 1575-1581
  • 3 Andre D, Pelletier R, Farringdon J et al. The Development of the SenseWear armband, a revolutionary energy assessment device to assess physical activity and lifestyle. Body Media Inc 2006
  • 4 Byrne NM, Hills AP, Hunter GR et al. Metabolic equivalent: one size does not fit all. J Appl Physiol 2005; 99: 1112-1119
  • 5 Cohen J. A power primer. Psychol Bulletin 1992; 112: 155-159
  • 6 Connolly CP, Coe DP, Kendrick JM O et al. Accuracy of physical activity monitors in pregnant women. Med Sci Sports Exerc 2011; 43: 1100-1105
  • 7 Corder K, Brage S, Ekelund U. Accelerometers and pedometers: methodology and clinical application. Curr Opinion Clin Nutr Metabol Care 2007; 10: 597-603
  • 8 Crouter SE, Clowers KG, Bassett DR Jr.. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol 2005; 100: 1324-1331
  • 9 Cunningham JJ. Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation. Am J Clin Nutr 1991; 54: 963-969
  • 10 Grams L, Tegtbur U, Gützlaff E et al. Energieumsatzmessungen unter kontrollierten Bedingungen – Vergleich von Accelerometer, Multisensorsystem und mobiler Spiroergometrie. Dtsch Z Sportmed 2011; 62: 160-165
  • 11 Jakicic JM, Marcus M, Gallagher KI et al. Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise. Med Sci Sports Exerc 2004; 36: 897-904
  • 12 Jing I, Wenyu Y. The energy expenditure and nutritional status of college students. The energy cost and the total energy expenditure per day Biomed Environment Sci 1991; 4: 295-303
  • 13 Johannsen DL, Calabro MA, Stewart J et al. Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc 2010; 42: 2134-2140
  • 14 Kinnunen TI, Tennant PWG, McParlin C et al. Agreement between pedometer and accelerometer in measuring physical activity in overweight and obese pregnant women. BMC Public Health 2011; 11: 501
  • 15 Manns PJ, Haennel RG. SenseWear armband and stroke: validity of energy expenditure and step count measurement during walking. Stroke Res Treat 2012; 2012: 1-8
  • 16 Masse L, Fuemmler B, Anderson C et al. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc 2005; 37: S544-S554
  • 17 Midorikawa T, Tanaka S, Kaneko K et al. Evaluation of low-intensity physical activity by triaxial accelerometry. Obesity 2007; 15: 3031-3038
  • 18 Müller C, Winter C, Rosenbaum D. Aktuelle objektive Messverfahren zur Erfassung körperlicher Aktivität im Vergleich zu subjektiven Erhebungsmethoden. Dtsch Z Sportmed 2010; 61: 11-18
  • 19 Nilsson A, Brage S, Riddoch C et al. Comparison of equations for predicting energy expenditure from accelerometer counts in children. Scand J Med Sci Sports 2008; 18: 643-650
  • 20 Papazoglou D, Augello G, Tagliaferri M et al. Evaluation of a multisensor armband in estimating energy expenditure in obese individuals. Obesity 2006; 14: 2217-2223
  • 21 Puyau MR, Adolph AL, Vohra FA et al. Validation and calibration of physical activity monitors in children. Obesity Res 2002; 10: 150-157
  • 22 Welk GJ. Principles of design and analyses for the calibration of accelerometry-based activity monitors. Med Sci Sports Exerc 2005; 37: S501-S511
  • 23 Wiklund M, Cider A, Olsen M. Accuracy of a pedometer and an accelerometer in women with obesity. Open Obesity J 2012; 4: 11-17
  • 24 Yue ASY, Woo J, Ip KWM et al. Effect of age and gender on energy expenditure in common activities of daily living in a Chinese population. Disabil Rehabil 2007; 29: 91-96