Aktuelle Ernährungsmedizin 2014; 39(S 01): S5-S7
DOI: 10.1055/s-0033-1360022
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Treffpunkt Darm

Die Interaktion zwischen Ballaststoffen und MikrobiotaThe Gut as a Meeting PlaceThe Interaction Between Dietary Fibre and Microbiota
M. Blaut
Deutsches Institut für Ernährungsforschung, Abteilung Gastrointestinale Mikrobiologie, Potsdam-Rehbrücke
› Author Affiliations
Further Information

Publication History

Publication Date:
20 February 2014 (online)

Zusammenfassung

Mikrobiom-Analysen zufolge sind Gene des Kohlenhydratstoffwechsels im humanen Darmmikrobiom überrepräsentiert. Dementsprechend verfügen Darmbakterien über ein breites Spektrum an Enzymen, die den Abbau von Ballaststoffen ermöglichen. Hauptsubstrat der Darmbakterien sind resistente Stärken, gefolgt von Nicht-Stärke-Polysacchariden wie Cellulose, Hemicellulose und Pektin. Bei der Fermentation entstehen unter anderem kurzkettige Fettsäuren wie Acetat, Propionat und Butyrat. Insbesondere Butyrat liefert nicht nur Energie, sondern übt auch regulatorische Funktionen aus. Daten aus epidemiologischen Studien sprechen dafür, dass eine ballaststoffreiche Ernährung das Darmkrebsrisiko senkt. In-vitro-Studien zeigen, dass bakteriell gebildete Buttersäure dabei eine Rolle spielen könnte: Sie hemmt die Proliferation von Krebszellen und induziert die Zelldifferenzierung. Darüber hinaus werden Effekte kurzkettiger Fettsäuren mit der Prävention des metabolischen Syndroms in Verbindung gebracht. Ballaststoffreiche Diäten korrelieren mit erhöhten Spiegeln des Appetit senkenden Hormons Peptid YY (PYY) und GLP-1 (Glucagon-like-peptide), das die Insulinsekretion in den Pankreaszellen und die Insulinsensitivität in den Zielgeweben positiv beeinflusst.

Abstract

Microbiome analyses have shown that genes of the carbohydrate metabolism are overrepresented in the human gut microbiome. Accordingly, gut bacteria contain a wide spectrum of enzymes that enable the breakdown of dietary fibres. The main substrates for the gut bacteria are resistant starches, followed by non-starch polysaccharides such as cellulose, hemicellulose, and pectin. During fermentation, short-chain fatty acids develop, such as acetate, propionate, and butyrate, among others. According to data from epidemiological studies, a diet rich in fibres lowers the risk of bowel cancer. In vitro studies have shown that bacterially produced butyrate may have a role in this, as it inhibits the proliferation of cancer cells and induces cell differentiation. Furthermore, the effects of short-chain fatty acids are associated with the prevention of the metabolic syndrome. Diets rich in fibre correlate with higher concentrations of the appetite-lowering hormone peptide YY (PYY) and GLP-1 (glucagon-like peptide), which has a positive effect on insulin secretion in the pancreatic cells and insulin sensitivity in the target tissues.

 
  • Literatur

  • 1 Blaut M. Ecology and physiology of the intestinal tract. Curr Top Microbiol Immunol 2013; 358: 247-272
  • 2 Ley RE, Hamady M, Lozupone C et al. Evolution of mammals and their gut microbes. Science 2008; 320: 1647-1651
  • 3 Blaut M, Collins MD, Welling GW et al. Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr 2002; 87 (Suppl. 02) 203-211
  • 4 Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124: 837-848
  • 5 Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65
  • 6 Turnbaugh PJ, Hamady M, Yatsunenko T et al. A core gut microbiome in obese and lean twins. Nature 2009; 457: 480-484
  • 7 Turnbaugh PJ, Ley RE, Hamady M et al. The human microbiome project. Nature 2007; 449: 804-810
  • 8 Gill SR, Pop M, Deboy RT et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312: 1355-1359
  • 9 Rowland IR, Wiseman H, Sanders TA et al. Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer 2000; 36: 27-32
  • 10 Cummings JH. Anatomy and physiology of the human colon. In: ILSI Worksshop on colonic microflora: Nutrition and health, Barcelona, Spain: 1994
  • 11 Bond JH, Currier BE, Buchwald H et al. Colonic conservation of malabsorbed carbohydrate. Gastroenterology 1980; 78: 444-447
  • 12 Sonnenburg JL, Xu J, Leip DD et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005; 307: 1955-1959
  • 13 Koropatkin NM, Smith TJ. SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. Structure 2010; 18: 200-215
  • 14 Tasse L, Bercovici J, Pizzut-Serin S et al. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 2010; 20: 1605-1612
  • 15 Murphy N, Norat T, Ferrari P et al. Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). PLoS One 2012; 7: e39361
  • 16 Lazarova DL, Chiaro C, Wong T et al. CBP Activity Mediates Effects of the Histone Deacetylase Inhibitor Butyrate on WNT Activity and Apoptosis in Colon Cancer Cells. J Cancer 2013; 4: 481-490
  • 17 Andoh A, Tsujikawa T, Fujiyama Y. Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des 2003; 9: 347-358
  • 18 Papathanasopoulos A, Camilleri M. Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology 2010; 138: 65-72, e61-62
  • 19 Sleeth ML, Thompson EL, Ford HE et al. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev 2010; 23: 135-145
  • 20 Karra E, Batterham RL. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol 2010; 316: 120-128
  • 21 Tolhurst G, Heffron H, Lam YS et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61: 364-371