Intensivmedizin up2date 2013; 09(04): 305-316
DOI: 10.1055/s-0033-1358822
Allgemeine Prinzipien der Intensivmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Akutes Lungenversagen: neue Definitionen, neue Therapien

Johannes Bickenbach
,
Gernot Marx
Further Information

Publication History

Publication Date:
13 November 2013 (online)

Kernaussagen
  • Die Berlin-Definition zur Identifizierung des akuten Lungenversagens ist ein wichtiger Meilenstein der ARDS-Forschung. Sie beinhaltet vor allem eine vereinfachte Definition, die je nach Ausmaß der Oxygenierungsstörung unter Berücksichtigung von FiO2 und PEEP eine Unterteilung in 3 Schweregrade vorsieht.

  • Diese neue klinische Einteilung ermöglicht eine bessere Risikobeurteilung und korreliert mit dem Grad bzw. der Schwere der Lungenschädigung [53].

  • Fortschritte bei der Behandlung des akuten Lungenversagens haben seit Einführung der lungenprotektiven Beatmung zumindest zu einer leichten Verbesserung des Überlebens geführt. Trotzdem hält die Diskussion über die lungenprotektive Beatmung an, weil Untersuchungen zur weiteren Reduktion des Tidalvolumens [19] zeigen, dass gerade beim schweren ARDS eine „ultraprotektive“ Beatmung mit ca. 3 ml/kgKG sinnvoll sein kann

  • Zur Rekrutierung der geschädigten Lunge muss man ein entsprechend hohes PEEP-Niveau („je kränker, desto höher“) einsetzen.

  • Studien zu unterstützenden Therapiestrategien zeigen keine eindeutigen Ergebnisse und sind gegenwärtig noch Gegenstand der Diskussion.

  • Eine pulmonale Vasodilatation mit NO und anderen Substanzen zur Behandlung des schwersten ARDS sollte Spezialzentren vorbehalten bleiben.

  • Die technische Weiterentwicklung extrakorporaler Therapieverfahren bietet eine Möglichkeit der Lungenprotektion. Allerdings ist die ECMO nur bei schwersten Formen des ARDS mit akuter, vitaler Gefährdung des Patienten sinnvoll.

  • Da extrakorporale Therapieformen nur bei wenigen Patienten eingesetzt werden, sollten nur spezialisierte Zentren diese schweren Verlaufsformen des ARDS (paO2/FiO2 < 150 mmHg) behandeln.

 
  • Literatur

  • 1 Phua J, Badia JR, Adhikari NKJ et al. Has mortality from acute respiratory distress syndrome decreased over time? A systematic review. . Am J Respir Crit Care Med 2009; 179: 220-227
  • 2 Ashbaugh DG, Bigelow DB, Petty TL et al. Acute respiratory distress in adults. Lancet 1967; 2: 319
  • 3 The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301-1308
  • 4 Bernard GR, Artigas A, Brigham KL et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149: 818-824
  • 5 Ferguson ND, Frutos-Vivar F, Esteban A et al. Acute respiratory distress syndrome: underrecognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med 2005; 33: 2228-2234
  • 6 Ranieri VM, Rubenfeld GD, Thompson BT et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307: 2526-2533
  • 7 Villar J, Blanco J, Anon JM et al. The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med 2011; 37: 1932-1941
  • 8 Ferguson ND, Fan E, Camporota L et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 2012; 38: 1573-1582
  • 9 Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342: 1334-1349
  • 10 Gattinoni L, Caironi P, Pelosi P et al. What has computed tomography taught us about the acute respiratory distress syndrome?. Am J Respir Crit Care Med 2001; 164: 1701-1711
  • 11 Dantzker DR, Brook CJ, Dehart P et al. Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 1979; 120: 1039-1052
  • 12 Grasso S, Stripoli T, Sacchi M et al. Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Respir Crit Care Med 2009; 180: 415-423
  • 13 Dreyfuss D, Saumon G. Ventilator-Induced Lung Injury: lessons from experimental studies. Am J Respir Crit Care Med 1998; 157: 294-323
  • 14 Oeckler RA, Hubmayr RD. Cell wounding and repair in ventilator injured lungs. Respir Physiol Neurobiol 2008; 163: 44-53
  • 15 Halbertsma FJ, Vaneker M, Scheffer GJ et al. Cytokines and biotrauma in ventilator-induced lung injury: a critical review of the literature. Neth J Med 2005; 63: 382-392
  • 16 Gordo VF, Delgado AC, Calvo HE. Mechanical ventilation induced lung injury. Med Intensiva 2007; 31: 18-26
  • 17 Plötz FB, Slutsky AS, van Vught AJ et al. Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med 2004; 30: 1865-1872
  • 18 Terragni PP, Rosboch G, Tealdi A et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2007; 175: 160-166
  • 19 Bein T, Weber-Carstens S, Goldmann A et al. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 2013; 39: 847-856
  • 20 Downar J, Mehta S. Bench-to-bedside review: high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care 2006; 10: 240
  • 21 Ferguson ND, Cook DJ, Guyatt GH et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 2013; 368: 795-805
  • 22 Young D, Lamb SE, Shah S et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 2013; 368: 806-813
  • 23 Guerin C. The preventive role of higher PEEP in treating severly hypoxemic ARDS. Minerva Anestesiol 2011; 77: 835-845
  • 24 Brower RG, Lanken PN, MacIntyre N et al. Higher vs lower end-expiratory pressure in patients with the ARDS. N Engl J Med 2004; 351: 327-336
  • 25 Mercat A, Richard JC, Vielle B et al. Positive End-Expiratory pressure Setting in Adults with acute lung injury and acute respiratory distress syndrome. JAMA 2008; 299: 646-655
  • 26 Briel M, Meade M, Mercat A et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303: 865-873
  • 27 Pelosi P, Rocco PR, de Abreu MG. Use of computed tomography scanning to guide lung recruitment and adjust positive-end expiratory pressure. Curr Opin Crit Care 2011; 17: 268-274
  • 28 Talmor D, Sarge T, Malhotra A et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359: 2095-2104
  • 29 Moerer O, Hahn G, Quintel M. Lung impedance measurements to monitor alveolar ventilation. Curr Opin Crit Care 2011; 17: 260-267
  • 30 Lowhagen K, Lindgren S, Odenstedt H et al. A new nonradiological method & to assess potential lung recruitability: a pilot study in ALI patients. Acta Anaesthesiol Scand 2011; 55: 165-174
  • 31 Rocco PR, Pelosi P, de Abreu MG. Pros and cons of recruitment maneuvers in acute lung injury and acute respiratory distress syndrome. Expert Rev Respir Med 2010; 4: 479-489
  • 32 Meade MO, Cook DJ, Griffith LE et al. A study of the physiologic responses to a lung recruitment maneuver in acute lung injury and acute respiratory distress syndrome. Respir Care 2008; 53: 1441-1449
  • 33 Gama de Abreu M, Güldner A, Pelosi P. Spontaneous breathing activity in acute lung injury and acute respiratory distress syndrome. Intensive Care Med 2012; 38: 1573-1582
  • 34 Levine S, Nguyen T, Taylor N et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008; 358: 1327-1335
  • 35 Jaber S, Jung B, Matecki S et al. Clinical review: ventilator-induced diaphragmatic dysfunction-human studies confirm animal model findings!. Crit Care 2011; 15: 206
  • 36 Murias G, Villagra A, Blanch L. Patient-ventilator dyssynchrony during assisted invasive mechanical ventilation. Minerva Anestesiol 2013; 79: 434-444
  • 37 Sud S, Friedrich JO, Taccone P et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 2010; 36: 585-599
  • 38 Guérin C, Reignier J, Richard JC et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368: 2159-2168
  • 39 Rossaint R, Falke KJ, Lopez F et al. Inhaled nitric oxid for the adult respiratory distress syndrome. N Engl J Med 1993; 328: 399-405
  • 40 Lundin S, Mang H, Smithies M et al. Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med 1999; 25: 911-919
  • 41 Gerlach H, Keh D, Semmerow A et al. Dose-response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: a prospective, randomized, controlled study. Am J Respir Crit Care Med 2003; 167: 1008-1015
  • 42 Adhikari NKJ, Burns KEA, Friedrich JO et al. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ 2007; 334: 779
  • 43 Zwissler B, Kemming G, Habler O et al. Inhaled prostacyclin (PGI2) vs. inhaled nitric oxide in adult respiratory distress syndrome. Am J Respir Crit Care Med 1996; 154: 1671-1677
  • 44 Luce JM, Montgomery AB, Marks JD et al. Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am Rev Respir Dis 1998; 138: 62-68
  • 45 Weigelt JA, Norcross JF, Borman KR et al. Early steroid therapy for respiratory failure. Arch Surg 1985; 120: 536-540
  • 46 Steinberg KP, Hudson LD, Goodman RB et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354: 1671-1684
  • 47 Meduri GU, Golden E, Freire AX et al. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest 2007; 131: 954-963
  • 48 Papazian L, Forel JM, Gacouin A et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363: 1107-1116
  • 49 Hraiech S, Forel JM, Papazian L. The role of neuromuscular blockers in ARDS: benefits and risks. Curr Opin Crit Care 2012; 18: 495-502
  • 50 Davies A, Jones D, Bailey M et al. Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome. JAMA 2009; 302: 1888-1895
  • 51 Peek GJ, Mugford M, Tiruvoipati R et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009; 374: 1351-1363
  • 52 Bein T, Weber F, Philipp A et al. A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med 2006; 34: 1372-1377
  • 53 Thille AW, Esteban A, Fernández-Segoviano P et al. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med 2013; 187: 761-767