Semin Liver Dis 2013; 33(04): 301-311
DOI: 10.1055/s-0033-1358523
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Transcriptional Control of Hepatic Lipid Metabolism by SREBP and ChREBP

Xu Xu
1   Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
,
Jae-Seon So
1   Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
,
Jong-Gil Park
1   Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
,
Ann-Hwee Lee
1   Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
12 November 2013 (online)

Abstract

The liver is a central organ that controls systemic energy homeostasis and nutrient metabolism. Dietary carbohydrates and lipids, and fatty acids derived from adipose tissue are delivered to the liver, and utilized for gluconeogenesis, lipogenesis, and ketogenesis, which are tightly regulated by hormonal and neural signals. Hepatic lipogenesis is activated primarily by insulin that is secreted from the pancreas after a high-carbohydrate meal. Sterol regulatory element binding protein-1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) are major transcriptional regulators that induce key lipogenic enzymes to promote lipogenesis in the liver. Sterol regulatory element binding protein-1c is activated by insulin through complex signaling cascades that control SREBP-1c at both transcriptional and posttranslational levels. Carbohydrate-responsive element-binding protein is activated by glucose independently of insulin. Here, the authors attempt to summarize the current understanding of the molecular mechanism for the transcriptional regulation of hepatic lipogenesis, focusing on recent studies that explore the signaling pathways controlling SREBPs and ChREBP.

 
  • References

  • 1 Towle HC. Glucose as a regulator of eukaryotic gene transcription. Trends Endocrinol Metab 2005; 16 (10) 489-494
  • 2 Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A 1998; 95 (11) 5987-5992
  • 3 Kim JB, Sarraf P, Wright M , et al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 1998; 101 (1) 1-9
  • 4 Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem 2002; 277 (11) 9520-9528
  • 5 Horton JD, Shah NA, Warrington JA , et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 2003; 100 (21) 12027-12032
  • 6 Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A 2004; 101 (19) 7281-7286
  • 7 Yamashita H, Takenoshita M, Sakurai M , et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 2001; 98 (16) 9116-9121
  • 8 Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A 2001; 98 (24) 13710-13715
  • 9 Ma L, Robinson LN, Towle HC. ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem 2006; 281 (39) 28721-28730
  • 10 Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109 (9) 1125-1131
  • 11 Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010; 12 (Suppl. 02) 83-92
  • 12 Jeon TI, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 2012; 23 (2) 65-72
  • 13 Hua X, Wu J, Goldstein JL, Brown MS, Hobbs HH. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics 1995; 25 (3) 667-673
  • 14 Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 1997; 99 (5) 838-845
  • 15 Im SS, Yousef L, Blaschitz C , et al. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab 2011; 13 (5) 540-549
  • 16 Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89 (3) 331-340
  • 17 Goldstein JL, Rawson RB, Brown MS. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch Biochem Biophys 2002; 397 (2) 139-148
  • 18 Sun LP, Li L, Goldstein JL, Brown MS. Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J Biol Chem 2005; 280 (28) 26483-26490
  • 19 Adams CM, Goldstein JL, Brown MS. Cholesterol-induced conformational change in SCAP enhanced by Insig proteins and mimicked by cationic amphiphiles. Proc Natl Acad Sci U S A 2003; 100 (19) 10647-10652
  • 20 Hua X, Nohturfft A, Goldstein JL, Brown MS. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 1996; 87 (3) 415-426
  • 21 Sun LP, Seemann J, Goldstein JL, Brown MS. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad Sci U S A 2007; 104 (16) 6519-6526
  • 22 Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab 2008; 8 (6) 512-521
  • 23 Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, Goldstein JL. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 1999; 96 (24) 13656-13661
  • 24 Hegarty BD, Bobard A, Hainault I, Ferré P, Bossard P, Foufelle F. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc Natl Acad Sci U S A 2005; 102 (3) 791-796
  • 25 Yellaturu CR, Deng X, Cagen LM , et al. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles. J Biol Chem 2009; 284 (12) 7518-7532
  • 26 Owen JL, Zhang Y, Bae SH , et al. Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc Natl Acad Sci U S A 2012; 109 (40) 16184-16189
  • 27 Yecies JL, Zhang HH, Menon S , et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 2011; 14 (1) 21-32
  • 28 Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci U S A 2003; 100 (6) 3155-3160
  • 29 Yellaturu CR, Deng X, Park EA, Raghow R, Elam MB. Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP).SREBP-1c complex. J Biol Chem 2009; 284 (46) 31726-31734
  • 30 Nagoshi E, Imamoto N, Sato R, Yoneda Y. Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell 1999; 10 (7) 2221-2233
  • 31 Peterson TR, Sengupta SS, Harris TE , et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146 (3) 408-420
  • 32 Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, Reue K. Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J Biol Chem 2007; 282 (6) 3450-3457
  • 33 Harris TE, Huffman TA, Chi A , et al. Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1. J Biol Chem 2007; 282 (1) 277-286
  • 34 Finck BN, Gropler MC, Chen Z , et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab 2006; 4 (3) 199-210
  • 35 Foretz M, Pacot C, Dugail I , et al. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol 1999; 19 (5) 3760-3768
  • 36 Tang X, Ma H, Shen Z, Zou S, Xu X, Lin C. Dehydroepiandrosterone activates cyclic adenosine 3′,5′-monophosphate/protein kinase A signalling and suppresses sterol regulatory element-binding protein-1 expression in cultured primary chicken hepatocytes. Br J Nutr 2009; 102 (5) 680-686
  • 37 Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007; 129 (7) 1261-1274
  • 38 Lizcano JM, Alessi DR. The insulin signalling pathway. Curr Biol 2002; 12 (7) R236-R238
  • 39 Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 2006; 68: 123-158
  • 40 Howell JJ, Manning BD. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 2011; 22 (3) 94-102
  • 41 Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12 (1) 9-22
  • 42 Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol 2009; 19 (22) R1046-R1052
  • 43 Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci U S A 2010; 107 (8) 3441-3446
  • 44 Porstmann T, Santos CR, Griffiths B , et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008; 8 (3) 224-236
  • 45 Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 1995; 377 (6548) 441-446
  • 46 Brunn GJ, Hudson CC, Sekulić A , et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997; 277 (5322) 99-101
  • 47 Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12 (1) 21-35
  • 48 Um SH, Frigerio F, Watanabe M , et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431 (7005) 200-205
  • 49 Yu Y, Yoon SO, Poulogiannis G , et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011; 332 (6035) 1322-1326
  • 50 Hsu PP, Kang SA, Rameseder J , et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332 (6035) 1317-1322
  • 51 Chen G, Liang G, Ou J, Goldstein JL, Brown MS. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci U S A 2004; 101 (31) 11245-11250
  • 52 Chen W, Chen G, Head DL, Mangelsdorf DJ, Russell DW. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab 2007; 5 (1) 73-79
  • 53 Repa JJ, Liang G, Ou J , et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 2000; 14 (22) 2819-2830
  • 54 Zhang Y, Breevoort SR, Angdisen J , et al. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest 2012; 122 (5) 1688-1699
  • 55 Amemiya-Kudo M, Shimano H, Yoshikawa T , et al. Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. J Biol Chem 2000; 275 (40) 31078-31085
  • 56 Calkin AC, Tontonoz P. Liver X receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30 (8) 1513-1518
  • 57 Yoshikawa T, Shimano H, Amemiya-Kudo M , et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol 2001; 21 (9) 2991-3000
  • 58 Peet DJ, Turley SD, Ma W , et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998; 93 (5) 693-704
  • 59 Kalaany NY, Gauthier KC, Zavacki AM , et al. LXRs regulate the balance between fat storage and oxidation. Cell Metab 2005; 1 (4) 231-244
  • 60 Kok T, Wolters H, Bloks VW , et al. Induction of hepatic ABC transporter expression is part of the PPARalpha-mediated fasting response in the mouse. Gastroenterology 2003; 124 (1) 160-171
  • 61 Bloks VW, Bakker-Van Waarde WM, Verkade HJ , et al. Down-regulation of hepatic and intestinal Abcg5 and Abcg8 expression associated with altered sterol fluxes in rats with streptozotocin-induced diabetes. Diabetologia 2004; 47 (1) 104-112
  • 62 Tobin KA, Ulven SM, Schuster GU , et al. Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J Biol Chem 2002; 277 (12) 10691-10697
  • 63 Wang X, Sato R, Brown MS, Hua X, Goldstein JL. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 1994; 77 (1) 53-62
  • 64 Hirano Y, Yoshida M, Shimizu M, Sato R. Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway. J Biol Chem 2001; 276 (39) 36431-36437
  • 65 Sundqvist A, Ericsson J. Transcription-dependent degradation controls the stability of the SREBP family of transcription factors. Proc Natl Acad Sci U S A 2003; 100 (24) 13833-13838
  • 66 Ericsson J, Edwards PA. CBP is required for sterol-regulated and sterol regulatory element-binding protein-regulated transcription. J Biol Chem 1998; 273 (28) 17865-17870
  • 67 Kim KH, Song MJ, Yoo EJ, Choe SS, Park SD, Kim JB. Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c. J Biol Chem 2004; 279 (50) 51999-52006
  • 68 Sundqvist A, Bengoechea-Alonso MT, Ye X , et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 2005; 1 (6) 379-391
  • 69 Punga T, Bengoechea-Alonso MT, Ericsson J. Phosphorylation and ubiquitination of the transcription factor sterol regulatory element-binding protein-1 in response to DNA binding. J Biol Chem 2006; 281 (35) 25278-25286
  • 70 Krycer JR, Sharpe LJ, Luu W, Brown AJ. The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol Metab 2010; 21 (5) 268-276
  • 71 Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378 (6559) 785-789
  • 72 Zhao X, Feng D, Wang Q , et al. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. J Clin Invest 2012; 122 (7) 2417-2427
  • 73 Onoyama I, Suzuki A, Matsumoto A , et al. Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver. J Clin Invest 2011; 121 (1) 342-354
  • 74 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136 (2) 215-233
  • 75 Fernández-Hernando C, Ramírez CM, Goedeke L, Suárez Y. MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol 2013; 33 (2) 178-185
  • 76 Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 2012; 13 (4) 239-250
  • 77 Dávalos A, Goedeke L, Smibert P , et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 2011; 108 (22) 9232-9237
  • 78 Gerin I, Clerbaux LA, Haumont O , et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010; 285 (44) 33652-33661
  • 79 Marquart TJ, Allen RM, Ory DS, Baldán A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 2010; 107 (27) 12228-12232
  • 80 Najafi-Shoushtari SH, Kristo F, Li Y , et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010; 328 (5985) 1566-1569
  • 81 Rayner KJ, Suárez Y, Dávalos A , et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328 (5985) 1570-1573
  • 82 Horie T, Ono K, Horiguchi M , et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 2010; 107 (40) 17321-17326
  • 83 Näär AM. Anti-atherosclerosis or no anti-atherosclerosis: that is the miR-33 question. Arterioscler Thromb Vasc Biol 2013; 33 (3) 447-448
  • 84 Rayner KJ, Sheedy FJ, Esau CC , et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 2011; 121 (7) 2921-2931
  • 85 Horie T, Baba O, Kuwabara Y , et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc 2012; 1 (6) e003376
  • 86 Rayner KJ, Esau CC, Hussain FN , et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478 (7369) 404-407
  • 87 Marquart TJ, Wu J, Lusis AJ, Baldán A. Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2013; 33 (3) 455-458
  • 88 Rotllan N, Ramírez CM, Aryal B, Esau CC, Fernández-Hernando C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- Mice—brief report. Arterioscler Thromb Vasc Biol 2013; 33 (8) 1973-1977
  • 89 Jeon TI, Esquejo RM, Roqueta-Rivera M , et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab 2013; 18 (1) 51-61
  • 90 Rufo C, Teran-Garcia M, Nakamura MT, Koo SH, Towle HC, Clarke SD. Involvement of a unique carbohydrate-responsive factor in the glucose regulation of rat liver fatty-acid synthase gene transcription. J Biol Chem 2001; 276 (24) 21969-21975
  • 91 Shih HM, Liu Z, Towle HC. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J Biol Chem 1995; 270 (37) 21991-21997
  • 92 Ma L, Tsatsos NG, Towle HC. Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes. J Biol Chem 2005; 280 (12) 12019-12027
  • 93 Stoeckman AK, Ma L, Towle HC. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem 2004; 279 (15) 15662-15669
  • 94 Sakiyama H, Wynn RM, Lee WR , et al. Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. J Biol Chem 2008; 283 (36) 24899-24908
  • 95 Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 2002; 277 (6) 3829-3835
  • 96 Kabashima T, Kawaguchi T, Wadzinski BE, Uyeda K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci U S A 2003; 100 (9) 5107-5112
  • 97 Tsatsos NG, Towle HC. Glucose activation of ChREBP in hepatocytes occurs via a two-step mechanism. Biochem Biophys Res Commun 2006; 340 (2) 449-456
  • 98 Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest 2010; 120 (12) 4316-4331
  • 99 Guinez C, Filhoulaud G, Rayah-Benhamed F , et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 2011; 60 (5) 1399-1413
  • 100 Sakiyama H, Fujiwara N, Noguchi T , et al. The role of O-linked GlcNAc modification on the glucose response of ChREBP. Biochem Biophys Res Commun 2010; 402 (4) 784-789
  • 101 Davies MN, O'Callaghan BL, Towle HC. Activation and repression of glucose-stimulated ChREBP requires the concerted action of multiple domains within the MondoA conserved region. Am J Physiol Endocrinol Metab 2010; 299 (4) E665-E674
  • 102 Li MV, Chang B, Imamura M, Poungvarin N, Chan L. Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 2006; 55 (5) 1179-1189
  • 103 Li MV, Chen W, Poungvarin N, Imamura M, Chan L. Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3. Mol Endocrinol 2008; 22 (7) 1658-1672
  • 104 McFerrin LG, Atchley WR. A novel N-terminal domain may dictate the glucose response of Mondo proteins. PLoS ONE 2012; 7 (4) e34803
  • 105 Dentin R, Tomas-Cobos L, Foufelle F , et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J Hepatol 2012; 56 (1) 199-209
  • 106 Iizuka K, Takeda J, Horikawa Y. Hepatic overexpression of dominant negative Mlx improves metabolic profile in diabetes-prone C57BL/6J mice. Biochem Biophys Res Commun 2009; 379 (2) 499-504
  • 107 Iizuka K, Wu W, Horikawa Y, Takeda J. Role of glucose-6-phosphate and xylulose-5-phosphate in the regulation of glucose-stimulated gene expression in the pancreatic β cell line, INS-1E. Endocr J 2013; 60 (4) 473-482
  • 108 Herman MA, Peroni OD, Villoria J , et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012; 484 (7394) 333-338
  • 109 Dentin R, Benhamed F, Hainault I , et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006; 55 (8) 2159-2170
  • 110 Iizuka K, Miller B, Uyeda K. Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am J Physiol Endocrinol Metab 2006; 291 (2) E358-E364
  • 111 Benhamed F, Denechaud PD, Lemoine M , et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012; 122 (6) 2176-2194
  • 112 He Z, Jiang T, Wang Z, Levi M, Li J. Modulation of carbohydrate response element-binding protein gene expression in 3T3-L1 adipocytes and rat adipose tissue. Am J Physiol Endocrinol Metab 2004; 287 (3) E424-E430
  • 113 Wang H, Kouri G, Wollheim CB. ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 2005; 118 (Pt 17) 3905-3915
  • 114 Metukuri MR, Zhang P, Basantani MK , et al. ChREBP mediates glucose-stimulated pancreatic β-cell proliferation. Diabetes 2012; 61 (8) 2004-2015
  • 115 Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 2008; 7 (2) 95-96