Erfahrungsheilkunde 2013; 62(06): 316-320
DOI: 10.1055/s-0033-1357575
Wissen
© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Bewegungssteuerung und -training bei Morbus Parkinson

Christian T. Haas
,
Magnus Liebherr
,
Patric Schubert
,
Lars Jäger
Further Information

Publication History

Publication Date:
02 January 2014 (online)

Zusammenfassung

Bewegungs- und Trainingsprogramme weisen ein bedeutendes Potenzial bei der Behandlung von Morbus Parkinson auf. Vor allem durch gezielt variable Trainingsinhalte können hier krankheitsbedingte Störungen im Bereich der Gang- und Gleichgewichtsmotorik reduziert werden. Zudem gibt es Hinweise, dass ein solches Bewegungstraining über die Freisetzung neurotropher Faktoren neuroprotektive Funktionen hat.

Die Übersicht erläutert die aktuelle Studienlage zur Bewegungsvariabilität und gibt einen Ausblick auf infrage kommende Trainingsansätze.

Abstract

Exercise programs have a considerable potential in the treatment of Parkinson’s disease. Especially variable exercises could be identified having positive effects on disturbances in gait and postural control. Moreover, there are evidences that these exercise patterns are associated with neuroprotective function through the release of neurotrophic factors.

This review presents current research on movement variability and approaches for future training concepts.

 
  • Literatur

  • 1 De Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5 (6): 525-535
  • 2 Keller S, Kessler T, Meuser T et al. Analyse der direkten Kosten in der Parkinson-Therapie. Nervenarzt 2003; 12: 1105-1109
  • 3 Gerlach M, Reichmann H, Riederer P. Die Parkinson-Krankheit. Grundlagen − Klinik − Therapie. Wien: Springer; 2003.
  • 4 Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. N Engl J Med 1988; 14: 876-880
  • 5 Braak H, Rüb U, Braak E. Neuroanatomie des Morbus Parkinson. Nervenarzt 2000; 6: 459-469
  • 6 Hurtig HI. Problems with current pharmacological treatment of Parkinson’s disease. Exp Neurol 1997; 144 (1): 10-16
  • 7 Benabid AL, Koudsie A, Benazzouz A et al. Deep brain stimulation of the corpus luysi (subthalamic nucleus) and other targets in Parkinson’s disease. Extension to new indications such as dystonia and epilepsy. J Neurol 2001; 248 (Suppl 3): S37-S47
  • 8 Meissner W, Trottenberg T, Klaffke S et al. Apomorphintherapie versus tiefe Hirnstimulation. Nervenarzt 2001; 12: 924-927
  • 9 Giladi N, Treves TA, Simon ES et al. Freezing of gait in advanced Parkinson’s disease. J Neur Transm 2001; 108 (1): 53-61
  • 10 Schwed M, Haas CT. Effekte trainingstherapeutischer Maßnahmen bei Morbus Parkinson, Teil A: Intrinsische Trainingsmaßnahmen. PT Zeitschr Physiother 2011; 8: 6-17
  • 11 Schwed M, Haas CT. Effekten trainingstherapeutischer Maßnahmen bei Morbus Parkinson, Teil B: Extrinsische Trainingsmaßnahmen. PT Zeitschr Physiother 2001; 9: 6-19
  • 12 Falvo MJ, Schilling BK, Earhart GM. Parkinson’s disease and resistive exercise: rationale, review, and recommendations. Mov Disord 2008; 23 (1): 1-11
  • 13 Schrag A, Jahanshahi M, Quninn N. What contributes to quality of life in patients with Parkinson’s disease?. J Neurol Neurosurg Psychiatry 2000; 69 (3): 308-312
  • 14 Ashburn A, Stack E, Pickering RM et al. A community-dwelling sample of people with Parkinson’s disease: characteristics of fallers and non-fallers. Age Aging 2001; 30 (1): 47-52
  • 15 Karlsen KH, Tandberg E, Arsland D et al. Health related quality of life in Parkinson’s disease: a prospective longitudinal study. J Neurol Neurosurg Psychiatry 2000; 69 (5): 584-589
  • 16 Turbanski S, Haas CT, Schmidtbleicher D. Effects of random whole-body-vibration on postural stability in Parkinson’s Disease. Res Sports Med 2005; 13 (3): 243-257
  • 17 Schwed M, Haas CT. Morbus Parkinson. Cueing, Chunking und Cross-Modal Interaction. Interdisziplinäre Erklärungsansätze für die Gangtherapie bei Morbus Parkinson. Physiother med 2009; 5: 5-10
  • 18 Schwed M, Kersten S, Scholl N, Haas CT. Assessments von neurologischen Gangstörungen. Bewegungstherapie Gesundheitssport 2009; 14-23
  • 19 Morris ME, Iansek R, Matyas TA et al. Stride length regulation in Parkinson’s disease. Normalization strategies and underlying mechanisms. Brain 1996; 119 (Pt 2): 551-568
  • 20 Morris ME, Iansek R, Matyas TA et al. The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 1194; 117 (Pt 5): 1169-1181
  • 21 Blin O, Ferrandez AM, Pailhous J et al. Dopa-sensitive and dopa-resistant gait parameters in Parkinson’s disease. J Neurol Sci 1991; 103 (1): 51-54
  • 22 Baltadjieva R, Giladi N, Gruendlinger L et al. Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. Eur J Neurosci 2006; 24 (6): 1815-1820
  • 23 Turbanski S.  Zur posturalen Kontrolle bei Morbus Parkinson: biomechanische Diagnose und Training [Dissertation]. Frankfurt: : 2006
  • 24 Schubert P, Kirchner M, Schmidtbleicher D, Haas CT. About the structure of posturography: Sampling duration, parametrization, focus of attention (part I). J Biomed Sci Eng 2012; 5: 496-507
  • 25 Hausdorff JM. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci 2007; 26 (4): 555-589
  • 26 Hausdorff JM. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos 2009; 19 (2) 026113
  • 27 Schubert P, Kirchner M. Ellipse area calculations and their applicability in posturography. Gait Posture. (In press)
  • 28 Błaszczyk JW, Orawiec R. Assessment of postural control in patients with Parkinson’s disease: sway ratio analysis. Hum Mov Sci 2011; 30 (2): 396-404
  • 29 Schubert P. Die Anwendung nichtlinearer Verfahren zur Charakterisierung der menschlichen Variabilität aus Zeitreihen. Deutsche Zeit Sportmed 2013; 64 (5): 132-140
  • 30 Schmit JM, Riley MA, Dalvi A et al. Deterministic center of pressure patterns characterize postural instability in Parkinson’s disease. Exp Brain Res 2006; 168 (3): 357-367
  • 31 Galna B, Lord S, Rochester L. Is gait variability reliable in older adults and Parkinson’s disease? Towards an optimal testing protocol. Gait Posture 2013; 37 (4): 580-585
  • 32 Frenkel-Toledo S, Giladi N, Peretz C et al. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Mov Disord 2005; 20 (9): 1109-1114
  • 33 Harbourne RT, Stergiou N. Movement variability and the use of nonlinear tools: principles to guide physical therapist practice. Phys Ther 2009; 89 (3): 267-282
  • 34 Stergiou N, Harbourne R, Cavanaugh J. Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther 2006; 30 (3): 120-129
  • 35 Haas CT, Blischke K. Bedeutung der Repetition für das motorische Lernen. Lehren aus der Sportwissenschaft. Neuroreha 2009; 1: 19-26
  • 36 Haas CT, Kersten S, Lutz C et al. Deviance-based gait training in multiple sclerosis. Isokinet Exerc Sci 2010; 2: 82-83
  • 37 Nelson LM, den Eeden SK, Tanner CM. Incidence of idiopathic Parkinson’s disease (PD) in a health maintenance organization (HMO): variation by age, gender and race/ethnicity. Neurology 1997; 48 (Suppl 2) A334
  • 38 Jenkins IH, Brooks DJ, Nixon PD et al. Motor sequence learning: a study with positron emission tomography. J Neurosci 1994; 14 (6): 3775-3790
  • 39 Penhune VB, Doyon J. Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. J Neurosci 2002; 22 (4): 1397-1406
  • 40 Playford ED, Jenkins IH, Passingham RE et al. Impaired medial frontal and putamen activation in Parkinson’s Disease: a positronen emission tomography study. Ann Neurol 1992; 32 (2): 151-161
  • 41 Jahanshahi M, Frith CD. Willed action and its impairments. Cogn Neuropsychol 1998; 15 (6−8): 483-533
  • 42 Catalan MJ, Ishii K, Honda M et al. A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain 1999; 122 (Pt 3): 483-495
  • 43 Andreassen CS, Jakobsen J, Flyvbjerg A et al. Expression of neurotrophic factors in diabetic muscle--relation to neuropathy and muscle strength. Brain 2009; 132 (Pt 10): 2724-2733
  • 44 Howells DW, Porritt MJ, Wong JY et al. Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 2000; 166 (1): 127-135
  • 45 Sarchielli P, Greco L, Stipa A et al. Brain-derived neurotrophic factor in patients with multiple sclerosis. J Neuroimmunol 2002; 132 (1−2): 180-188
  • 46 Azoulay D, Vachapova V, Shihman B et al. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 2005; 167 (1−2): 215-218
  • 47 Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 2006; 7 (4): 278-294
  • 48 Vaynman S, Gomez-Pinilla F. License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair 2005; 19 (4): 283-295
  • 49 Neeper SA, Gómez-Pinilla F, Choi J et al. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 1996; 726 (1−2): 49-56
  • 50 Hutchinson KJ, Gomez-Pinilla F, Crowe MJ et al. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats. Brain 2004; 127 (Pt 6): 1403-1414
  • 51 Molteni R, Wu A, Vaynman S et al. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience 2004; 123 (2): 429-440
  • 52 Ying Z, Roy RR, Edgerton VR et al. Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Exp Neurol 2005; 193 (2): 411-419
  • 53 Cohen AD, Tillersson JL, Smith AD et al. Neuroprotective effects of prior limb use in 6-hydrxydopamine-treated rats: possible role of GDNF. J Neurochem 2003; 85 (2): 299-305
  • 54 Tillerson JL, Cohen AD, Caudle WM et al. Forced Nonuse in Unilateral Parkinsonian Rats Exacerbates Injury. J Neurosci 2002; 22 (15): 6790-6799
  • 55 Aguiar AS Jr, Speck AE, Prediger RD et al. Downhill training upregulates mice hippocampal and striatal brain-derived neurotrophic factor levels. J Neural Transm 2008; 115 (9): 1251-1255
  • 56 Smith MA, Makino S, Kvetnanský R et al. Effects of stress on neurotrophic factor expression in the rat brain. Ann N Y Acad Sci 1995; 771: 234-239
  • 57 Nofuji Y, Suwa M, Moriyama Y et al. Decreased serum brain-derived neurotrophic factor in trained men. Neurosci Lett 2008; 437 (1): 29-32
  • 58 Podsiadlo D, Richardson S.  The timed „Up & Go“: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991; 39 (2): 142-148
  • 59 Berg KO, Wood-Dauphinee SL, Williams JI et al. Measuring balance in the elderly: validation of an instrument. Can J Public Health 1992; 83 (2): S7-11
  • 60 Fahn S, Elton RL. Unified Parkinson’s disease rating scale. In: Fahn S, Goldstein M, Marsden D, et al., Hrsg. Recent developments in Parkinson’s disease. Vol. II. New Jersey: Mac-Millan; 1987.