Klinische Neurophysiologie 2013; 44(04): 247-256
DOI: 10.1055/s-0033-1357213
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Induktion und Verstärkung von kortiko-kortikaler Reorganisation nach Schlaganfall

Induction and Increase of Cortico-Cortical Reorganisation Post Stroke
F. Müller-Dahlhaus
1   Abteilung Neurologie mit Schwerpunkt neurovaskuläre Erkrankungen, Hertie-Institut für Klinische Hirnforschung Universitätsklinik der Eberhard-Karls-Universität Tübingen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
19. Dezember 2013 (online)

Zusammenfassung

Bei einem Schlaganfall kommt es zu einer akuten Hirnschädigung, welche mit einer Schädigung neuronaler Netzwerke einhergeht. Entscheidend für die Erholung nach Schlaganfall ist eine adaptive Reorganisation der überlebenden zerebralen Netzwerke durch Mechanismen neuronaler Plastizität. So kommt es zu strukturellen Veränderungen des peri-läsionellen Hirngewebes und weitreichenden zerebralen Netzwerken, wodurch der Verlust motorischer, sensibler und kognitiver Fähigkeiten funktionell kompensiert werden kann. Ergebnisse aus der neurowissenschaftlichen Grundlagenforschung zeigen, dass der kortikalen Reorganisation nach einem Schlaganfall auf zellulärer Ebene vor allem eine aktivitätsabhängige Neuvernetzung und synaptische Plastizität zugrunde liegen. Mittels funktioneller Bildgebung und elektrophysiologischer Methoden lässt sich die kortikale Reorganisation nach Schlaganfall heutzutage auch beim Menschen in vivo darstellen. Zudem stehen mit der transkraniellen direkten Stromstimulation (engl. transcranial direct current stimulation, tDCS) und der transkraniellen Magnetstimulation (engl. transcranial magnetic stimulation, TMS) nicht-invasive Hirnstimula­tionsverfahren zur Verfügung, welche es erlauben, direkt mit Mechanismen synaptischer Plastizität zu interferieren. Die Integration des in den letzten Jahren gewonnenen Wissens über die komplexen und dynamischen zerebralen Prozesse, welche einer Erholung nach einem Schlaganfall zugrunde liegen, und interventionellen Ansätzen wie nicht-invasiven Hirnstimulationsverfahren eröffnet die Möglichkeit, eine adaptive Reorganisation des Gehirns nach Schlaganfall individuell zu verstärken und damit die Erholung zu begünstigen. Dieser Artikel gibt eine Übersicht von den neurobiologischen Grundlagen der Erholung nach Schlaganfall bis hin zu ersten vielversprechenden klinischen Studien zur Verstärkung der kortikalen Reorganisation beim Menschen.

Abstract

Stroke leads to a sudden brain injury with damage in neuronal networks. Fundamental for recovery of function after stroke is an adaptive reorganization of surviving cerebral networks by mechanisms of neural plasticity. These include structural remodeling of peri-lesional brain tissue and reorganization of large-scale brain networks, thereby compensating for the structural damage and regaining lost sensation, motion and cogni­tion. Results from basic neuroscience suggest that cortical reorganization after stroke is based on activity-dependent rewiring and synaptic plasticity. Functional neuroimaging and electrophysiological techniques have allowed the investigation of cortical reorganization after stroke also in humans in vivo. In addition, non-invasive brain stimulation techniques like transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) can directly interfere with mechanisms of synaptic plasticity. Thus, integrating knowledge gained in recent years about the complex and dynamic cerebral processes underlying recovery of function after stroke with interventional approaches using non-invasive brain stimulation can open the opportunity to individually facilitate adaptive cortical reorganization and, thereby, promote recovery. This article reviews key findings from the neural mechanisms of recovery of function after stroke to the first promising clinical studies promoting cortical reorganization in humans.

 
  • Literatur

  • 1 Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 2006; 19: 84-90
  • 2 Ward NS, Frackowiak RS. The functional anatomy of cerebral reorganisation after focal brain injury. J Physiol Paris 2006; 99: 425-436
  • 3 Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 2009; 10: 861-872
  • 4 Grefkes C, Ward N. Cortical Reorganization After Stroke: How Much and How Functional?. The Neuroscientist 2013 ; (Epub)
  • 5 Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 1949
  • 6 Rehme AK, Fink GR, von Cramon DY et al. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal fMRI. Cereb Cortex 2011; 21: 756-768
  • 7 Ward NS, Brown MM, Thompson AJ et al. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003; 126: 2476-2496
  • 8 Lotze M, Markert J, Sauseng P et al. The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 2006; 26: 6096-6102
  • 9 Corbetta M, Kincade MJ, Lewis C et al. Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 2005; 8: 1603-1610
  • 10 Saur D, Lange R, Baumgaertner A et al. Dynamics of language reorganization after stroke. Brain 2006; 129: 1371-1384
  • 11 Murase N, Duque J, Mazzocchio R et al. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 2004; 55: 400-409
  • 12 Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?. Lancet Neurol 2006; 5: 708-712
  • 13 Grefkes C, Nowak DA, Eickhoff SB et al. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 2008; 63: 236-246
  • 14 Ward N. Assessment of cortical reorganisation for hand function after stroke. J Physiol 2011; 589: 5625-5632
  • 15 Rehme AK, Eickhoff SB, Wang LE et al. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 2011; 55: 1147-1158
  • 16 Fritsch B, Reis J, Martinowich K et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010; 66: 198-204
  • 17 Vlachos A, Müller-Dahlhaus F, Rosskopp J et al. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci 2012; 32: 17514-17523
  • 18 Stefan K, Kunesch E, Cohen LG et al. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000; 123 (Pt 3) 572-584
  • 19 Müller-Dahlhaus F, Ziemann U, Classen J. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. Front Syn Neurosci 2010; 2: 34
  • 20 Koganemaru S, Mima T, Nakatsuka M et al. Human motor associative plasticity induced by paired bihemispheric stimulation. J Physiol 2009; 587: 4629-4644
  • 21 Rizzo V, Siebner HS, Morgante F et al. Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a Hebbian mechanism. Cereb Cortex 2009; 19: 907-915
  • 22 Arai N, Müller-Dahlhaus F, Murakami T et al. State-Dependent and Timing-Dependent Bidirectional Associative Plasticity in the Human SMA-M1 Network. J Neurosci 2011; 31: 15376-15383
  • 23 Buch ER, Johnen VM, Nelissen N et al. Noninvasive associative plasticity induction in a corticocortical pathway of the human brain. J Neurosci 2011; 31: 17669-17679
  • 24 Hummel F, Celnik P, Giraux P et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005; 128: 490-499
  • 25 Khedr EM, Ahmed MA, Fathy N et al. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 2005; 65: 466-468
  • 26 Kim YH, You SH, Ko MH et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 2006; 37: 1471-1476
  • 27 Talelli P, Greenwood RJ, Rothwell JC. Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. Clin Neurophysiol 2007; 118: 333-342
  • 28 Mansur CG, Fregni F, Boggio PS et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 2005; 64: 1802-1804
  • 29 Takeuchi N, Chuma T, Matsuo Y et al. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke 2005; 36: 2681-2686
  • 30 Fregni F, Boggio PS, Valle AC et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 2006; 37: 2115-2122
  • 31 Nowak DA, Grefkes C, Dafotakis M et al. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch Neurol 2008; 65: 741-747
  • 32 Grefkes C, Nowak DA, Wang LE et al. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modelling. Neuroimage 2010; 50: 233-242
  • 33 Avenanti A, Coccia M, Ladavas E et al. Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology 2012; 78: 256-264
  • 34 Martin PI, Naeser MA, Theoret H et al. Transcranial magnetic stimulation as a complementary treatment for aphasia. Semin Speech Lang 2004; 25: 181-191
  • 35 Naeser MA, Martin PI, Nicholas M et al. Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang 2005; 93: 95-105
  • 36 Hamilton RH, Sanders L, Benson J et al. Stimulating conversation: enhancement of elicited propositional speech in a patient with chronic non-fluent aphasia following transcranial magnetic stimulation. Brain Lang 2010; 113: 45-50
  • 37 Koch G, Oliveri M, Cheeran B et al. Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain 2008; 131: 3147-3155
  • 38 Nyffeler T, Cazzoli D, Hess CW et al. One session of repeated parietal theta burst stimulation trains induces long-lasting improvement of visual neglect. Stroke 2009; 40: 2791-2796
  • 39 Hesse MD, Sparing R, Fink GR. Ameliorating spatial neglect with non-invasive brain stimulation : from pathophysiological concepts to novel treatment strategies. Neuropsychol Rehabil 2011; 21: 676-702
  • 40 Koch G, Bonnì S, Giacobbe V et al. θ-burst stimulation of the left hemisphere accelerates recovery of hemispatial neglect. Neurology 2012; 78: 24-30
  • 41 Stinear CM, Barber PA, Coxon JP et al. Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain 2008; 131: 1381-1390