Semin Reprod Med 2013; 31(06): 443-451
DOI: 10.1055/s-0033-1356480
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Biomarkers of Ovarian Reserve—Do They Predict Somatic Aging?

Marcelle I. Cedars
1   Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF Women's Health Clinical Research Center, San Francisco, California
› Author Affiliations
Further Information

Publication History

Publication Date:
07 October 2013 (online)

Abstract

Menopause, while the end of reproduction, also represents a major hormonal, psychological and physiological event in the lives of all women. Several studies have suggested an association between the age of menopause and longevity. Additionally, cellular and molecular mechanisms of general aging have been suggested to play a vital role in ovarian aging. In parallel with the recognition of these similar physiological parameters, markers of “ovarian age,” also known as ovarian reserve, have been developed. These markers may allow prediction of age of menopause and the identification of women at increased risk for earlier menopause, and perhaps advanced somatic aging. The ability to identify these women would be critically important if decreased ovarian reserve were associated with increased long-term health risks. Thus, it is critical to understand if ovarian aging, and particularly, early ovarian aging, would place women at risk for long-term health issues with increased morbidity and mortality. Numerous studies reviewed support an association between menopause, and premenopausal changes consistent with diminish ovarian reserve, and cardiovascular risk, bone loss and changes in mood and cognition. Only longitudinal studies will be able to confirm if any identified associations reflect causality or common underlying risk, but the available data suggest women with diminished ovarian reserve represent a unique group that may be at increased risk for long-term health effects beyond fertility loss.

 
  • References

  • 1 van Rooij IA, Tonkelaar Id, Broekmans FJ , et al. Anti-müllerian hormone is a promising predictor for the occurrence of the menopausal transition. Menopause 2004; 11 (6, Pt 1) 601-606
  • 2 Broekmans FJ, Faddy MJ, Scheffer G, te Velde ER. Antral follicle counts are related to age at natural fertility loss and age at menopause. Menopause 2004; 11 (6, Pt 1) 607-614
  • 3 Broer SL, Eijkemans MJ, Scheffer GJ , et al. Anti-mullerian hormone predicts menopause: a long-term follow-up study in normoovulatory women. J Clin Endocrinol Metab 2011; 96 (8) 2532-2539
  • 4 Tehrani FR, Solaymani-Dodaran M, Tohidi M, Gohari MR, Azizi F. Modeling age at menopause using serum concentration of anti-mullerian hormone. J Clin Endocrinol Metab 2013; 98 (2) 729-735
  • 5 Freeman EW, Sammel MD, Lin H, Gracia CR. Anti-mullerian hormone as a predictor of time to menopause in late reproductive age women. J Clin Endocrinol Metab 2012; 97 (5) 1673-1680
  • 6 Wellons MF, Bates GW, Schreiner PJ, Siscovick DS, Sternfeld B, Lewis CE. Antral follicle count predicts natural menopause in a population-based sample: the Coronary Artery Risk Development in Young Adults Women's Study. Menopause 2013; 20 (8) 825-830
  • 7 Snowdon DA, Kane RL, Beeson WL , et al. Is early natural menopause a biologic marker of health and aging?. Am J Public Health 1989; 79 (6) 709-714
  • 8 Cooper GS, Sandler DP. Age at natural menopause and mortality. Ann Epidemiol 1998; 8 (4) 229-235
  • 9 Cooper GS, Baird DD, Weinberg CR, Ephross SA, Sandler DP. Age at menopause and childbearing patterns in relation to mortality. Am J Epidemiol 2000; 151 (6) 620-623
  • 10 Jansen SC, Temme EH, Schouten EG. Lifetime estrogen exposure versus age at menopause as mortality predictor. Maturitas 2002; 43 (2) 105-112
  • 11 Jacobsen BK, Heuch I, Kvåle G. Age at natural menopause and all-cause mortality: a 37-year follow-up of 19,731 Norwegian women. Am J Epidemiol 2003; 157 (10) 923-929
  • 12 Mondul AM, Rodriguez C, Jacobs EJ, Calle EE. Age at natural menopause and cause-specific mortality. Am J Epidemiol 2005; 162 (11) 1089-1097
  • 13 Ossewaarde ME, Bots ML, Verbeek AL , et al. Age at menopause, cause-specific mortality and total life expectancy. Epidemiology 2005; 16 (4) 556-562
  • 14 Tom SE, Cooper R, Wallace RB, Guralnik JM. Type and timing of menopause and later life mortality among women in the Iowa Established Populations for the Epidemiological Study of the Elderly (EPESE) cohort. J Womens Health (Larchmt) 2012; 21 (1) 10-16
  • 15 Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11 (3) 298-300
  • 16 Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11 (3) 298-300
  • 17 Miquel J, Economos AC, Fleming J, Johnson Jr JE. Mitochondrial role in cell aging. Exp Gerontol 1980; 15 (6) 575-591
  • 18 Kotrschal A, Ilmonen P, Penn DJ. Stress impacts telomere dynamics. Biol Lett 2007; 3 (2) 128-130
  • 19 Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408 (6809) 239-247
  • 20 von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002; 27 (7) 339-344
  • 21 Haendeler J, Hoffmann J, Brandes RP, Zeiher AM, Dimmeler S. Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol Cell Biol 2003; 23 (13) 4598-4610
  • 22 Malinger G, Zakut H, Soreq H. Cholinoceptive properties of human primordial, preantral, and antral oocytes: in situ hybridization and biochemical evidence for expression of cholinesterase genes. J Mol Neurosci 1989; 1 (2) 77-84
  • 23 Singh B, Rutledge JM, Armstrong DT. Epidermal growth factor and its receptor gene expression and peptide localization in porcine ovarian follicles. Mol Reprod Dev 1995; 40 (4) 391-399
  • 24 Keefe D. MtDNA deletions on oocytes and reproductive aging in women. Fertil Steril 1995; 64 (3) 577-583
  • 25 Brenner CA, Wolny YM, Barritt JA, Matt DW, Munné S, Cohen J. Mitochondrial DNA deletion in human oocytes and embryos. Mol Hum Reprod 1998; 4 (9) 887-892
  • 26 Tarín JJ. Aetiology of age-associated aneuploidy: a mechanism based on the 'free radical theory of ageing'. Hum Reprod 1995; 10 (6) 1563-1565
  • 27 Phaneuf S, Leeuwenburgh C. Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Physiol Regul Integr Comp Physiol 2002; 282 (2) R423-R430
  • 28 Lodish H, Berk A, Zipursky LS , et al. Cellular energetics: glycolysis, aerobic oxidation, and photosynthesis. In: Freeman WH, , ed. Molecular Cell Biology. 2000: http://www.ncbi.nlm.nih.gov/books/bv.fcgi?highlight=mitochondrial,function&rid=mcb.section.4377#4383
  • 29 May-Panloup P, Chretien MF, Malthiery Y, Reynier P. Mitochondrial DNA in the oocyte and the developing embryo. Curr Top Dev Biol 2007; 77: 51-83
  • 30 Barritt JA, Kokot M, Cohen J, Steuerwald N, Brenner CA. Quantification of human ooplasmic mitochondria. Reprod Biomed Online 2002; 4 (3) 243-247
  • 31 Leese HJ, Barton AM. Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J Reprod Fertil 1984; 72 (1) 9-13
  • 32 Fujino Y, Ozaki K, Yamamasu S , et al. DNA fragmentation of oocytes in aged mice. Hum Reprod 1996; 11 (7) 1480-1483
  • 33 Perez GI, Jurisicova A, Matikainen T , et al. A central role for ceramide in the age-related acceleration of apoptosis in the female germline. FASEB J 2005; 19 (7) 860-862
  • 34 Eichenlaub-Ritter U, Vogt E, Yin H, Gosden R. Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online 2004; 8 (1) 45-58
  • 35 Blackburn EH. Telomere states and cell fates. Nature 2000; 408 (6808) 53-56
  • 36 Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 2006; 12 (10) 1133-1138
  • 37 Sitte N, Saretzki G, von Zglinicki T. Accelerated telomere shortening in fibroblasts after extended periods of confluency. Free Radic Biol Med 1998; 24 (6) 885-893
  • 38 Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci 2004; 1019: 278-284
  • 39 Zhang P, Dilley C, Mattson MP. DNA damage responses in neural cells: Focus on the telomere. Neuroscience 2007; 145 (4) 1439-1448
  • 40 Hezel AF, Bardeesy N, Maser RS. Telomere induced senescence: end game signaling. Curr Mol Med 2005; 5 (2) 145-152
  • 41 Aviv A. Telomeres and human aging: facts and fibs. Sci SAGE KE 2004; 2004 (51) pe43
  • 42 Cawthon RM, Smith KR, O'Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 2003; 361 (9355) 393-395
  • 43 Martin-Ruiz C, Dickinson HO, Keys B, Rowan E, Kenny RA, Von Zglinicki T. Telomere length predicts poststroke mortality, dementia, and cognitive decline. Ann Neurol 2006; 60 (2) 174-180
  • 44 Beyne-Rauzy O, Prade-Houdellier N, Demur C , et al. Tumor necrosis factor-alpha inhibits hTERT gene expression in human myeloid normal and leukemic cells. Blood 2005; 106 (9) 3200-3205
  • 45 Fu W, Lu C, Mattson MP. Telomerase mediates the cell survival-promoting actions of brain-derived neurotrophic factor and secreted amyloid precursor protein in developing hippocampal neurons. J Neurosci 2002; 22 (24) 10710-10719
  • 46 Gorbunova V, Seluanov A, Pereira-Smith OM. Expression of human telomerase (hTERT) does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J Biol Chem 2002; 277 (41) 38540-38549
  • 47 Mattson MP, Fu W, Zhang P. Emerging roles for telomerase in regulating cell differentiation and survival: a neuroscientist's perspective. Mech Ageing Dev 2001; 122 (7) 659-671
  • 48 Liu L, Trimarchi JR, Smith PJ, Keefe DL. Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 2002; 1 (1) 40-46
  • 49 Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL. Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci U S A 2004; 101 (17) 6496-6501
  • 50 Liu L, Trimarchi JR, Navarro P, Blasco MA, Keefe DL. Oxidative stress contributes to arsenic-induced telomere attrition, chromosome instability, and apoptosis. J Biol Chem 2003; 278 (34) 31998-32004
  • 51 Keefe DL, Franco S, Liu L , et al. Telomere length predicts embryo fragmentation after in vitro fertilization in women—toward a telomere theory of reproductive aging in women. Am J Obstet Gynecol 2005; 192 (4) 1256-1260 , discussion 1260–1261
  • 52 Butts SF, Seifer DB. Racial and ethnic differences in reproductive potential across the life cycle. Fertil Steril 2010; 93 (3) 681-690
  • 53 Sohal RS, Orr WC. The redox stress hypothesis of aging. Free Radic Biol Med 2012; 52 (3) 539-555
  • 54 Soules MR, Sherman S, Parrott E , et al. Stages of Reproductive Aging Workshop (STRAW). J Womens Health Gend Based Med 2001; 10 (9) 843-848
  • 55 Lambalk CB, van Disseldorp J, de Koning CH, Broekmans FJ. Testing ovarian reserve to predict age at menopause. Maturitas 2009; 63 (4) 280-291
  • 56 Lawson R, El-Toukhy T, Kassab A , et al. Poor response to ovulation induction is a stronger predictor of early menopause than elevated basal FSH: a life table analysis. Hum Reprod 2003; 18 (3) 527-533
  • 57 de Boer EJ, den Tonkelaar I, te Velde ER, Burger CW, Klip H, van Leeuwen FE ; OMEGA-project group. A low number of retrieved oocytes at in vitro fertilization treatment is predictive of early menopause. Fertil Steril 2002; 77 (5) 978-985
  • 58 van Disseldorp J, Faddy MJ, Themmen AP , et al. Relationship of serum antimüllerian hormone concentration to age at menopause. J Clin Endocrinol Metab 2008; 93 (6) 2129-2134
  • 59 Lisabeth LD, Beiser AS, Brown DL, Murabito JM, Kelly-Hayes M, Wolf PA. Age at natural menopause and risk of ischemic stroke: the Framingham heart study. Stroke 2009; 40 (4) 1044-1049
  • 60 Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA. Premature menopause or early menopause: long-term health consequences. Maturitas 2010; 65 (2) 161-166
  • 61 Feng Y, Hong XM, Wilker E , et al. Effects of age at menarche, reproductive years, and menopause on metabolic risk factors for cardiovascular diseases. Atherosclerosis 2008; 196 (2) 590-597
  • 62 Parashar S, Reid KJ, Spertus JA, Shaw LJ, Vaccarino V. Early menopause predicts angina after myocardial infarction. Menopause 2010; 17 (5) 938-945
  • 63 Colditz GA, Willett WC, Stampfer MJ, Rosner B, Speizer FE, Hennekens CH. Menopause and the risk of coronary heart disease in women. N Engl J Med 1987; 316 (18) 1105-1110
  • 64 Park HT, Cho GJ, Ahn KH , et al. Association of insulin resistance with anti-Mullerian hormone levels in women without polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 2010; 72 (1) 26-31
  • 65 Jacobsen BK, Nilssen S, Heuch I, Kvåle G. Does age at natural menopause affect mortality from ischemic heart disease?. J Clin Epidemiol 1997; 50 (4) 475-479
  • 66 van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijkemans JC, Banga JD. Age at menopause as a risk factor for cardiovascular mortality. Lancet 1996; 347 (9003) 714-718
  • 67 Roy SK, Terada DM. Activities of glucose metabolic enzymes in human preantral follicles: in vitro modulation by follicle-stimulating hormone, luteinizing hormone, epidermal growth factor, insulin-like growth factor I, and transforming growth factor beta1. Biol Reprod 1999; 60 (3) 763-768
  • 68 Palmer JR, Rosenberg L, Shapiro S. Reproductive factors and risk of myocardial infarction. Am J Epidemiol 1992; 136 (4) 408-416
  • 69 Fioretti F, Tavani A, Gallus S, Franceschi S, La Vecchia C. Menopause and risk of non-fatal acute myocardial infarction: an Italian case-control study and a review of the literature. Hum Reprod 2000; 15 (3) 599-603
  • 70 Lin JW, Caffrey JL, Chang MH, Lin YS. Sex, menopause, metabolic syndrome, and all-cause and cause-specific mortality—cohort analysis from the Third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab 2010; 95 (9) 4258-4267
  • 71 de Kleijn MJ, van der Schouw YT, van der Graaf Y. Reproductive history and cardiovascular disease risk in postmenopausal women: a review of the literature. Maturitas 1999; 33 (1) 7-36
  • 72 Atsma F, Bartelink ML, Grobbee DE, van der Schouw YT. Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: a meta-analysis. Menopause 2006; 13 (2) 265-279
  • 73 Cui R, Iso H, Toyoshima H , et al; JACC Study Group. Relationships of age at menarche and menopause, and reproductive year with mortality from cardiovascular disease in Japanese postmenopausal women: the JACC study. J Epidemiol 2006; 16 (5) 177-184
  • 74 Joakimsen O, Bønaa KH, Stensland-Bugge E, Jacobsen BK. Population-based study of age at menopause and ultrasound assessed carotid atherosclerosis: The Tromsø Study. J Clin Epidemiol 2000; 53 (5) 525-530
  • 75 Jacobsen BK, Knutsen SF, Fraser GE. Age at natural menopause and total mortality and mortality from ischemic heart disease: the Adventist Health Study. J Clin Epidemiol 1999; 52 (4) 303-307
  • 76 Matthews KA, Santoro N, Lasley B , et al. Relation of cardiovascular risk factors in women approaching menopause to menstrual cycle characteristics and reproductive hormones in the follicular and luteal phases. J Clin Endocrinol Metab 2006; 91 (5) 1789-1795
  • 77 Gorgels WJ, , v d Graaf Y, Blankenstein MA, Collette HJ, Erkelens DW, Banga JD. Urinary sex hormone excretions in premenopausal women and coronary heart disease risk: a nested case-referent study in the DOM-cohort. J Clin Epidemiol 1997; 50 (3) 275-281
  • 78 Solomon CG, Hu FB, Dunaif A , et al. Menstrual cycle irregularity and risk for future cardiovascular disease. J Clin Endocrinol Metab 2002; 87 (5) 2013-2017
  • 79 Punnonen R, Jokela H, Aine R, Teisala K, Salomäki A, Uppa H. Impaired ovarian function and risk factors for atherosclerosis in premenopausal women. Maturitas 1997; 27 (3) 231-238
  • 80 Bairey Merz CN, Johnson BD, Sharaf BL , et al; WISE Study Group. Hypoestrogenemia of hypothalamic origin and coronary artery disease in premenopausal women: a report from the NHLBI-sponsored WISE study. J Am Coll Cardiol 2003; 41 (3) 413-419
  • 81 Gast GC, Grobbee DE, Smit HA, Bueno-de-Mesquita HB, Samsioe GN, van der Schouw YT. Menstrual cycle characteristics and risk of coronary heart disease and type 2 diabetes. Fertil Steril 2010; 94 (6) 2379-2381
  • 82 Nelson LM. Clinical practice. Primary ovarian insufficiency. N Engl J Med 2009; 360 (6) 606-614
  • 83 De Vos M, Devroey P, Fauser BC. Primary ovarian insufficiency. Lancet 2010; 376 (9744) 911-921
  • 84 Kalantaridou SN, Naka KK, Papanikolaou E , et al. Impaired endothelial function in young women with premature ovarian failure: normalization with hormone therapy. J Clin Endocrinol Metab 2004; 89 (8) 3907-3913
  • 85 Clarkson TB. Estrogen effects on arteries vary with stage of reproductive life and extent of subclinical atherosclerosis progression. Menopause 2007; 14 (3, Pt 1) 373-384
  • 86 Sanders JL, Newman AB. Telomere Length in Epidemiology: A Biomarker of Aging, Age-Related Disease, Both, or Neither?. Epidemiol Rev 2013; (Jan) 9
  • 87 Sobenin IA, Chistiakov DA, Bobryshev YV, Postnov AY, Orekhov AN. Mitochondrial Mutations in Atherosclerosis: New Solutions in Research and Possible Clinical Applications. Curr Pharm Des 2013; (Feb) 15
  • 88 Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 2013; 6: 19
  • 89 Fyhrquist F, Saijonmaa O. Telomere length and cardiovascular aging. Ann Med 2012; 44 (Suppl. 01) S138-S142
  • 90 Huzen J, de Boer RA, van Veldhuisen DJ, van Gilst WH, van der Harst P. The emerging role of telomere biology in cardiovascular disease. Front Biosci (Landmark Ed) 2010; 15: 35-45
  • 91 De Meyer T, Rietzschel ER, De Buyzere ML, Van Criekinge W, Bekaert S. Telomere length and cardiovascular aging: the means to the ends?. Ageing Res Rev 2011; 10 (2) 297-303
  • 92 Pal L, Zhang K, Zeitlian G, Santoro N. Characterizing the reproductive hormone milieu in infertile women with diminished ovarian reserve. Fertil Steril 2010; 93 (4) 1074-1079
  • 93 Mersereau JE, Evans ML, Moore DH , et al. Luteal phase estrogen is decreased in regularly menstruating older women compared with a reference population of younger women. Menopause 2008; 15 (3) 482-486
  • 94 Matthews KA, Crawford SL, Chae CU , et al. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition?. J Am Coll Cardiol 2009; 54 (25) 2366-2373
  • 95 Matthews KA, Kuller LH, Chang Y, Edmundowicz D. Premenopausal risk factors for coronary and aortic calcification: a 20-year follow-up in the healthy women study. Prev Med 2007; 45 (4) 302-308
  • 96 Kuller LH, Matthews KA, Sutton-Tyrrell K, Edmundowicz D, Bunker CH. Coronary and aortic calcification among women 8 years after menopause and their premenopausal risk factors: the healthy women study. Arterioscler Thromb Vasc Biol 1999; 19 (9) 2189-2198
  • 97 Lee JS, Hayashi K, Mishra G, Yasui T, Kubota T, Mizunuma H. Independent association between age at natural menopause and hypercholesterolemia, hypertension, and diabetes mellitus: Japan nurses' health study. J Atheroscler Thromb 2013; 20 (2) 161-169
  • 98 Wellons M, Ouyang P, Schreiner PJ, Herrington DM, Vaidya D. Early menopause predicts future coronary heart disease and stroke: the Multi-Ethnic Study of Atherosclerosis. Menopause 2012; 19 (10) 1081-1087
  • 99 Jacobsen BK, Knutsen SF, Fraser GE. Age at natural menopause and total mortality and mortality from ischemic heart disease: the Adventist Health Study. J Clin Epidemiol 1999; 52 (4) 303-307
  • 100 Hu FB, Grodstein F, Hennekens CH , et al. Age at natural menopause and risk of cardiovascular disease. Arch Intern Med 1999; 159 (10) 1061-1066
  • 101 Løkkegaard E, Jovanovic Z, Heitmann BL, Keiding N, Ottesen B, Pedersen AT. The association between early menopause and risk of ischaemic heart disease: influence of Hormone Therapy. Maturitas 2006; 53 (2) 226-233
  • 102 Baba Y, Ishikawa S, Amagi Y, Kayaba K, Gotoh T, Kajii E. Premature menopause is associated with increased risk of cerebral infarction in Japanese women. Menopause 2010; 17 (3) 506-510
  • 103 Cramer DW, Xu H, Harlow BL. Family history as a predictor of early menopause. Fertil Steril 1995; 64 (4) 740-745
  • 104 Torgerson DJ, Thomas RE, Reid DM. Mothers and daughters menopausal ages: is there a link?. Eur J Obstet Gynecol Reprod Biol 1997; 74 (1) 63-66
  • 105 van Asselt KM, Kok HS, Pearson PL , et al. Heritability of menopausal age in mothers and daughters. Fertil Steril 2004; 82 (5) 1348-1351
  • 106 Mishra G, Hardy R, Kuh D. Are the effects of risk factors for timing of menopause modified by age? Results from a British birth cohort study. Menopause 2007; 14 (4) 717-724
  • 107 Kok HS, van Asselt KM, van der Schouw YT , et al. Heart disease risk determines menopausal age rather than the reverse. J Am Coll Cardiol 2006; 47 (10) 1976-1983
  • 108 Lloyd-Jones DM, Leip EP, Larson MG , et al. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 2006; 113 (6) 791-798
  • 109 Berry JD, Liu K, Folsom AR , et al. Prevalence and progression of subclinical atherosclerosis in younger adults with low short-term but high lifetime estimated risk for cardiovascular disease: the coronary artery risk development in young adults study and multi-ethnic study of atherosclerosis. Circulation 2009; 119 (3) 382-389
  • 110 Berry JD, Dyer A, Cai X , et al. Lifetime risks of cardiovascular disease. N Engl J Med 2012; 366 (4) 321-329
  • 111 Chu MC, Rath KM, Huie J, Taylor HS. Elevated basal FSH in normal cycling women is associated with unfavourable lipid levels and increased cardiovascular risk. Hum Reprod 2003; 18 (8) 1570-1573
  • 112 Pal L, Bevilacqua K, Zeitlian G, Shu J, Santoro N. Implications of diminished ovarian reserve (DOR) extend well beyond reproductive concerns. Menopause 2008; 15 (6) 1086-1094
  • 113 Pal L, Norian J, Zeitlian G, Bevilacqua K, Freeman R, Santoro N. Vasomotor symptoms in infertile premenopausal women: a hitherto unappreciated risk for low bone mineral density. Fertil Steril 2008; 90 (5) 1626-1634
  • 114 Wu Z, Boss O. Targeting PGC-1 alpha to control energy homeostasis. Expert Opin Ther Targets 2007; 11 (10) 1329-1338
  • 115 Sun L, Zhang Z, Zhu LL , et al. Further evidence for direct pro-resorptive actions of FSH. Biochem Biophys Res Commun 2010; 394 (1) 6-11
  • 116 Robinson LJ, Tourkova I, Wang Y , et al. FSH-receptor isoforms and FSH-dependent gene transcription in human monocytes and osteoclasts. Biochem Biophys Res Commun 2010; 394 (1) 12-17
  • 117 Zhu LL, Blair H, Cao J , et al. Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc Natl Acad Sci U S A 2012; 109 (36) 14574-14579
  • 118 Geng W, Yan X, Du H, Cui J, Li L, Chen F. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model. Biochem Biophys Res Commun 2013; 434 (2) 280-286
  • 119 Soares CN, Maki PM. Menopausal transition, mood, and cognition: an integrated view to close the gaps. Menopause 2010; 17 (4) 812-814
  • 120 Boulware MI, Kent BA, Frick KM. The impact of age-related ovarian hormone loss on cognitive and neural function. Curr Top Behav Neurosci 2012; 10: 165-184
  • 121 Maki PM, Freeman EW, Greendale GA , et al. Summary of the National Institute on Aging-sponsored conference on depressive symptoms and cognitive complaints in the menopausal transition. Menopause 2010; 17 (4) 815-822
  • 122 Barron AM, Pike CJ. Sex hormones, aging, and Alzheimer's disease. Front Biosci (Elite Ed) 2012; 4: 976-997
  • 123 Henderson VW, Brinton RD. Menopause and mitochondria: windows into estrogen effects on Alzheimer's disease risk and therapy. Prog Brain Res 2010; 182: 77-96
  • 124 Grimm A, Lim YA, Mensah-Nyagan AG, Götz J, Eckert A. Alzheimer's disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol 2012; 46 (1) 151-160
  • 125 Yao J, Brinton RD. Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer's disease. Adv Pharmacol 2012; 64: 327-371
  • 126 Long J, He P, Shen Y, Li R. New evidence of mitochondria dysfunction in the female Alzheimer's disease brain: deficiency of estrogen receptor-β. J Alzheimers Dis 2012; 30 (3) 545-558
  • 127 Schupf N, Pang D, Patel BN , et al. Onset of dementia is associated with age at menopause in women with Down's syndrome. Ann Neurol 2003; 54 (4) 433-438
  • 128 Coppus AM, Evenhuis HM, Verberne GJ , et al. Early age at menopause is associated with increased risk of dementia and mortality in women with Down syndrome. J Alzheimers Dis 2010; 19 (2) 545-550
  • 129 Geerlings MI, Ruitenberg A, Witteman JC , et al. Reproductive period and risk of dementia in postmenopausal women. JAMA 2001; 285 (11) 1475-1481
  • 130 Rocca WA, Grossardt BR, Shuster LT. Oophorectomy, menopause, estrogen treatment, and cognitive aging: clinical evidence for a window of opportunity. Brain Res 2011; 1379: 188-198
  • 131 Amtul Z, Wang L, Westaway D, Rozmahel RF. Neuroprotective mechanism conferred by 17beta-estradiol on the biochemical basis of Alzheimer's disease. Neuroscience 2010; 169 (2) 781-786
  • 132 Zhao L, Yao J, Mao Z, Chen S, Wang Y, Brinton RD. 17β-Estradiol regulates insulin-degrading enzyme expression via an ERβ/PI3-K pathway in hippocampus: relevance to Alzheimer's prevention. Neurobiol Aging 2011; 32 (11) 1949-1963
  • 133 Whitmer RA, Quesenberry CP, Zhou J, Yaffe K. Timing of hormone therapy and dementia: the critical window theory revisited. Ann Neurol 2011; 69 (1) 163-169
  • 134 Sherwin BB. Estrogen and cognitive functioning in women: lessons we have learned. Behav Neurosci 2012; 126 (1) 123-127
  • 135 Salpeter SR, Buckley NS, Liu H, Salpeter EE. The cost-effectiveness of hormone therapy in younger and older postmenopausal women. Am J Med 2009; 122 (1) 42-52 , e2
  • 136 Shumaker SA, Legault C, Kuller L , et al; Women's Health Initiative Memory Study. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women's Health Initiative Memory Study. JAMA 2004; 291 (24) 2947-2958
  • 137 Coker LH, Espeland MA, Rapp SR , et al. Postmenopausal hormone therapy and cognitive outcomes: the Women's Health Initiative Memory Study (WHIMS). J Steroid Biochem Mol Biol 2010; 118 (4-5) 304-310
  • 138 Berent-Spillson A, Persad CC, Love T , et al. Hormonal environment affects cognition independent of age during the menopause transition. J Clin Endocrinol Metab 2012; 97 (9) E1686-E1694
  • 139 Cohen LS, Soares CN, Vitonis AF, Otto MW, Harlow BL. Risk for new onset of depression during the menopausal transition: the Harvard study of moods and cycles. Arch Gen Psychiatry 2006; 63 (4) 385-390
  • 140 Freeman EW, Sammel MD, Lin H, Nelson DB. Associations of hormones and menopausal status with depressed mood in women with no history of depression. Arch Gen Psychiatry 2006; 63 (4) 375-382
  • 141 Greendale GA, Huang MH, Wight RG , et al. Effects of the menopause transition and hormone use on cognitive performance in midlife women. Neurology 2009; 72 (21) 1850-1857
  • 142 Schmidt PJ, Nieman L, Danaceau MA , et al. Estrogen replacement in perimenopause-related depression: a preliminary report. Am J Obstet Gynecol 2000; 183 (2) 414-420
  • 143 Soares CN, Almeida OP, Joffe H, Cohen LS. Efficacy of estradiol for the treatment of depressive disorders in perimenopausal women: a double-blind, randomized, placebo-controlled trial. Arch Gen Psychiatry 2001; 58 (6) 529-534
  • 144 Morrison MF, Kallan MJ, Ten Have T, Katz I, Tweedy K, Battistini M. Lack of efficacy of estradiol for depression in postmenopausal women: a randomized, controlled trial. Biol Psychiatry 2004; 55 (4) 406-412
  • 145 Weber M, Mapstone M. Memory complaints and memory performance in the menopausal transition. Menopause 2009; 16 (4) 694-700
  • 146 McEwen BS. Invited review: Estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol 2001; 91 (6) 2785-2801
  • 147 Deecher D, Andree TH, Sloan D, Schechter LE. From menarche to menopause: exploring the underlying biology of depression in women experiencing hormonal changes. Psychoneuroendocrinology 2008; 33 (1) 3-17
  • 148 Eriksson O, Landén M, Sundblad C, Holte J, Eriksson E, Naessén T. Ovarian morphology in premenstrual dysphoria. Psychoneuroendocrinology 2012; 37 (6) 742-751
  • 149 Becker D, Orr A, Weizman A, Kotler M, Pines A. Depressed mood through women's reproductive cycle: correlation to mood at menopause. Climacteric 2007; 10 (1) 46-50
  • 150 Bhagat M, Mukherjee S, De P , et al. Clustering of cardiometabolic risk factors in Asian Indian women: Santiniketan women study. Menopause 2010; 17 (2) 359-364
  • 151 Bleil ME, Adler NE, Pasch LA , et al. Depressive symptomatology, psychological stress, and ovarian reserve: a role for psychological factors in ovarian aging?. Menopause 2012; 19 (11) 1176-1185
  • 152 Bleil ME, Adler NE, Pasch LA , et al. Psychological stress and reproductive aging among pre-menopausal women. Hum Reprod 2012; 27 (9) 2720-2728