Ultraschall Med 2015; 36(01): 35-39
DOI: 10.1055/s-0033-1355865
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Correlation Between Cardiac Tissue Doppler and Peripheral Vascular Doppler in the Anemic Fetus – An Additional Method to Determine the Transfusion Threshold?

Korrelation zwischen kardialem Gewebedoppler und peripherem Gefäßdoppler in fetaler Anämie
M. Michel
1   Frauenheilkunde und Geburtshilfe, Fetal Cardiac Imaging Research Group, Westfälische Wilhelms-Universität Münster
,
R. Schmitz
1   Frauenheilkunde und Geburtshilfe, Fetal Cardiac Imaging Research Group, Westfälische Wilhelms-Universität Münster
,
A. Entenmann
2   Anästhesiologie und operative Intensivmedizin, Asklepios Klinik Nord, Standort Heidberg, Hamburg
,
J. Heinig
1   Frauenheilkunde und Geburtshilfe, Fetal Cardiac Imaging Research Group, Westfälische Wilhelms-Universität Münster
,
J. Steinhard
3   Fetale Kardiologie, Zentrum für angeborene Herzfehler, Bad Oeynhausen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

17. Mai 2013

09. September 2013

Publikationsdatum:
10. Dezember 2013 (online)

Abstract

Purpose: To examine the relationship between cardiac tissue Doppler and peripheral vascular Doppler measurements in fetal anemia.

Materials and Methods: We analyzed high frame rate cardiac Tissue Doppler Imaging (TDI) data files of 26 anemic fetuses. The peak systolic tissue velocity (PSV), peak systolic displacement (PD), and peak systolic strain (PS) were determined in the mid-segment of the ventricular walls (ROI 1 right ventricle (RV), ROI 2 left ventricle (LV)) and in the basal segment of the ventricular walls (ROI 3 tricuspid annulus, ROI 4 mitral annulus). TDI parameters were correlated with established fetal vascular Doppler parameters (peak systolic blood flow velocity (Vmax) in the middle cerebral artery (MCA), pulsatility index (PI) in the MCA, in the umbilical artery (UA), and in the venous duct (DV)).

Results: The PSV in the LV correlated significantly negatively with the PI in the MCA. Both the PSV and PD in the LV correlated significantly negatively with the PI in the UA. The PS in the RV correlated significantly negatively with the PI in the UA. The left ventricular PSV and PD correlated significantly positively with the PI in the DV. The Vmax in the MCA did not correlate with any systolic myocardial TDI parameter.

Conclusion: In fetal anemia, peak systolic myocardial TDI parameters correlate with vascular Doppler parameters, confirming that TDI is a promising method to evaluate myocardial function in the anemic fetus. This suggests combining both techniques to quantify fetal myocardial function in anemia even more accurately, possibly allowing for the determination of the indication for intrauterine transfusion.

Zusammenfassung

Ziel: Untersuchung des Zusammenhangs zwischen kardialem Gewebedoppler und peripherem Gefäßdoppler in fetaler Anämie.

Material und Methoden: Mittels Gewebedoppler untersuchten wir Herzen von 26 anämischen Feten. Wir bestimmten maximale systolische Gewebegeschwindigkeit (peak systolic velocity, PSV), maximales systolisches Displacement (peak systolic displacement, PD) und maximale systolische Gewebeverformung (peak systolic strain, PS) im mittleren Segment der lateralen Wände des rechten (ROI 1) sowie des linken (ROI 2) Ventrikels. Weiterhin wurden diese Parameter in der lateralen Wand auf Höhe des Trikuspidalklappenanulus (ROI 3) und des Mitralklappenanulus (ROI 4) bestimmt. Wir korrelierten die erhobenen Gewebedoppler- mit bereits etablierten Gefäßdopplerparametern (Pulsatility Index (PI) in Arteria cerebri media (MCA), Arteria umbilicalis (UA) und Ductus venosus (DV) sowie maximale systolische Blutflussgeschwindigkeit (Vmax) in der MCA).

Ergebnisse: PSV im linken Ventrikel korrelierte signifikant negativ mit dem PI in der MCA. Sowohl PSV als auch PD im linken Ventrikel korrelierten signifikant negativ mit dem PI in der UA. PS im rechten Ventrikel korrelierte signifikant negativ mit dem PI in der UA. PSV und PD im linken Ventrikel korrelierten signifikant positiv mit dem PI im DV. Die Vmax in der MCA korrelierte mit keinem der untersuchten systolischen Parameter.

Schlussfolgerung: Maximale systolische myokardiale Gewebedopplerparameter korrelieren mit etablierten Gefäßdopplerparametern im anämischen Fetus. Die Kombination von kardialem Gewebedoppler und peripherem Gefäßdoppler ist zur genaueren Quantifizierung der fetalen myokardialen Funktion in Anämie geeignet und könnte zur Indikationsstellung der intrauterinen Transfusion beitragen.

 
  • References

  • 1 Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med Historical Article 1974; 67: 447-449
  • 2 Mari G, Deter RL, Carpenter RL et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med Clinical Trial Multicenter Study 2000; 342: 9-14
  • 3 Michel M, Schmitz R, Kiesel L et al. Fetal myocardial peak systolic strain before and after intrauterine red blood cell transfusion – a tissue Doppler imaging study. J Perinat Med 2012; 40: 545-550
  • 4 Bahlmann F, Fittschen M, Reinhard I et al. Blood flow velocity waveforms of the umbilical artery in a normal population: reference values from 18 weeks to 42 weeks of gestation. Ultraschall Med 2012; 33: E80-E87
  • 5 Detti L, Oz U, Guney I et al. Doppler ultrasound velocimetry for timing the second intrauterine transfusion in fetuses with anemia from red cell alloimmunization. Am J Obstet Gynecol 2001; 185: 1048-1051
  • 6 Bigras JL, Suda K, Dahdah NS et al. Cardiovascular evaluation of fetal anemia due to alloimmunization. Fetal Diagn Ther Evaluation Studies 2008; 24: 197-202
  • 7 Cardiac screening examination of the fetus: guidelines for performing the ‘basic’ and ‘extended basic’ cardiac scan. Ultrasound Obstet Gynecol Practice Guideline 2006; 27: 107-113
  • 8 Ishii T, McElhinney DB, Harrild DM et al. Circumferential and longitudinal ventricular strain in the normal human fetus. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography. 2012 Jan 25: 105-111
  • 9 Comas M, Crispi F, Gomez O et al. Gestational age- and estimated fetal weight-adjusted reference ranges for myocardial tissue Doppler indices at 24-41 weeks’ gestation. Ultrasound Obstet Gynecol Research Support, Non-U.S. Gov’t 2011; 37: 57-64
  • 10 Larsen LU, Sloth E, Petersen OB et al. Systolic myocardial velocity alterations in the growth-restricted fetus with cerebroplacental redistribution. Ultrasound Obstet Gynecol Research Support, Non-U.S. Gov’t 2009; 34: 62-67
  • 11 Comas M, Crispi F, Cruz-Martinez R et al. Usefulness of myocardial tissue Doppler vs conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction. Am J Obstet Gynecol Research Support, Non-U.S. Gov't 2010 ; 203: 45 e1-47
  • 12 Willruth A, Geipel A, Berg C et al. Assessment of cardiac function in monochorionic diamniotic twin pregnancies with twin-to-twin transfusion syndrome before and after fetoscopic laser photocoagulation using Speckle tracking. Ultraschall Med 2013 ; 34: 162-168
  • 13 D'Hooge J, Heimdal A, Jamal F et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. European journal of echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology Review 2000 ; 1: 154-170
  • 14 Watanabe S, Hashimoto I, Saito K et al. Characterization of ventricular myocardial performance in the fetus by tissue Doppler imaging. Circ J 2009 Research Support, Non-U.S. Gov't 73: 943-947
  • 15 Edelstone DI, Rudolph AM. Preferential streaming of ductus venosus blood to the brain and heart in fetal lambs. Am J Physiol Research Support, U.S. Gov't, P.H.S. 1979; 237: H724-H729
  • 16 Kiserud T, Acharya G. The fetal circulation. Prenat Diagn Review 2004; 24: 1049-1059
  • 17 Cambonie G, Matecki S, Milesi C et al. Myocardial adaptation to anemia and red blood cell transfusion in premature infants requiring ventilation support in the 1st postnatal week. Neonatology Clinical Trial Comparative Study 2007; 92: 174-181
  • 18 Xiong L, Bernard LS, Hashima JN et al. Regional myocardial function and response to acute afterload increase in chronically anemic fetal sheep: evaluation by two-dimensional strain echocardiography. Ultrasound Med Biol 2010 ; 36: 2042-2047
  • 19 Borke WB, Edvardsen T, Fugelseth D et al. Reduced left ventricular function in hypoxemic newborn pigs: a strain Doppler echocardiographic study. Pediatr Res Research Support, Non-U.S. Gov't 2006; 59: 630-635
  • 20 Nii M, Roman KS, Kingdom J et al. Assessment of the evolution of normal fetal diastolic function during mid and late gestation by spectral Doppler tissue echocardiography. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography Clinical Trial Research Support, Non-U.S. Gov’t 2006 ; 19: 1431-1437
  • 21 Appleton CP, Hatle LK, Popp RL. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol Research Support, Non-U.S. Gov't Research Support, U.S. Gov’t, P.H.S. 1988 ; 12: 426-440
  • 22 Bruch C, Schmermund A, Bartel T et al. Tissue Doppler imaging: a new technique for assessment of pseudonormalization of the mitral inflow pattern. Echocardiography Clinical Trial Comparative Study Controlled Clinical Trial 2000 ; 17: 539-546
  • 23 Abali G, Tokgozoglu L, Ozcebe OI et al. Which Doppler parameters are load independent? A study in normal volunteers after blood donation. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography Clinical Trial 2005 ; 18: 1260-1265
  • 24 Gomez CA, Ludomirsky A, Ensing GJ et al. Effect of acute changes in load on left ventricular diastolic function during device closure of atrial septal defects. The American journal of cardiology 2005; 95: 686-688
  • 25 Wang J, Khoury DS, Yue Y et al. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J Research Support, Non-U.S. Gov't 2008 ; 29: 1283-1289
  • 26 Urheim S, Edvardsen T, Torp H et al. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 2000; 102: 1158-1164
  • 27 Wang J, Khoury DS, Thohan V et al. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation Clinical Trial 2007; 115: 1376-1383
  • 28 Welch R, Rampling MW, Anwar A et al. Changes in hemorheology with fetal intravascular transfusion. Am J Obstet Gynecol Research Support, Non-U.S. Gov't 1994 ; 170: 726-732
  • 29 Bilardo CM, Nicolaides KH, Campbell S. Doppler studies in red cell isoimmunization. Clin Obstet Gynecol 1989 ; 32: 719-727
  • 30 Rizzo G, Nicolaides KH, Arduini D et al. Effects of intravascular fetal blood transfusion on fetal intracardiac Doppler velocity waveforms. Am J Obstet Gynecol Comparative Study Research Support, Non-U.S. Gov’t 1990 ; 163: 1231-1238
  • 31 Ho M. The history of cytomegalovirus and its diseases. Med Microbiol Immunol Historical Article Review 2008 ; 197: 65-73
  • 32 Puccetti C, Contoli M, Bonvicini F et al. Parvovirus B19 in pregnancy: possible consequences of vertical transmission. Prenat Diagn 2012 ; 32: 897-902