Ultraschall Med 2013; 34(6): 590-594
DOI: 10.1055/s-0033-1355820
Rapid Comunication
© Georg Thieme Verlag KG Stuttgart · New York

Monitoring During Hepatic Radiofrequency Ablation (RFA): Comparison of Real-Time Ultrasound Elastography (RTE) and Contrast-Enhanced Ultrasound (CEUS): First Clinical Results of 25 Patients

Monitoring während hepatischer Radiofrequenzablation (RFA): Vergleich der Real-Time-Ultraschall-Elastografie (RTE) mit der Kontrastmittelsonografie (CEUS). Erste klinische Ergebnisse bei 25 Patienten
P. Wiggermann
1   Department of Radiology, University Hospital Regensburg, Germany
,
K. Brünn
1   Department of Radiology, University Hospital Regensburg, Germany
,
J. Rennert
1   Department of Radiology, University Hospital Regensburg, Germany
,
M. Loss
2   Department of Surgery, University Hospital Regensburg, Germany
,
H. Wobser
3   Department of Internal Medicine I, University Hospital Regensburg, Germany
,
A. G. Schreyer
1   Department of Radiology, University Hospital Regensburg, Germany
,
C. Stroszczynski
1   Department of Radiology, University Hospital Regensburg, Germany
,
E. M. Jung
1   Department of Radiology, University Hospital Regensburg, Germany
› Author Affiliations
Further Information

Publication History

04 May 2012

27 September 2013

Publication Date:
16 October 2013 (online)

Abstract

Purpose: To evaluate the reliability of ultrasound elastography for delineating thermal ablation defects post-radiofrequency ablation (RFA) by comparing lesion dimensions determined by real-time elastography (RTE) with the findings of contrast-enhanced ultrasound (CEUS).

Materials and Methods: A total of 21 malignant liver tumors were percutaneously ablated using RFA. Color-coded elastography and CEUS were performed by one experienced examiner, using a 1 – 5 MHz multi-frequency convex transducer (LOGIQ E9, GE). Lesions were examined using CEUS and real-time elastography (RTE) to assess ablation defects. Measurements of lesions (long axis, short axis, and area) representing the same image plane used for elastography were taken during CEUS examination and compared to the measurements obtained from the elastograms. All measurements were performed by two independent observers.

Results: A statistically significant correlation in vivo between RTE and CEUS measurements with respect to the lesion’s principal axis and area (r = 0.876 long axis, r = 0.842 short axis and r = 0.889 area) was found. Inter-rater reliability assessed with the concordance correlation coefficient was substantial for all measurements (ρc ≥ 0.96) Overall, elastography slightly underestimated the lesion size, as judged by the CEUS images.

Conclusion: These results support that RTE could potentially be used for the routine assessment of thermal ablation therapies.

Zusammenfassung

Ziel: Überprüfung, inwieweit es in vivo möglich ist, mit der Real-Time-Elastografie (RTE), Läsionen nach RFA zu beurteilen im Vergleich zum kontrastmittelverstärkten Ultraschall (CEUS).

Material und Methoden: Insgesamt wurden 21 maligne Lebertumoren perkutan mit Hilfe der RFA abladiert. Die postinterventionelle farbkodierte Elastografie sowie die CEUS-Untersuchungen wurden von einem erfahrenen Untersucher mit einem Konvexschallkopf (1 – 5 MHz, LOGIQ E9, GE) durchgeführt. Die Ablationsdefekte wurden im CEUS und mit der RTE von zwei unabhängigen Auswerten beurteilt. Die Läsionsgrößen (lange-, kurze Achse sowie Fläche) wurden sowohl im CEUS, als auch in der RTE bestimmt. Die Läsionsausdehnung in der RTE wurde mit dem Ablationsdefekt im CEUS korreliert.

Ergebnisse: Die statistische Auswertung zeigte eine signifikante Korrelation zwischen Defektbeurteilung mittels RTE und des CEUS, sowohl bei Messungen des Diameters als auch bei der Läsionsfläche (r = 0,876 lange Achse, r = 0,842 kurze Achse sowie r = 0,889 Flächenausdehnung). Interrater-Reliabilität der Messungen war stabil mit einem Konkordanz-Korrelationskoeffizienten von ρc ≥ 0,96. Insgesamt unterschätzte die RTE die Läsionsgröße im Vergleich zur CEUS leicht.

Schlussfolgerung: Die RTE bietet eine potentielle Möglichkeit des Monitorings von RFA-Läsionen.

 
  • References

  • 1 Guenette JP, Dupuy DE. Radiofrequency ablation of colorectal hepatic metastases. J Surg Oncol 2010; 102: 978-987
  • 2 Tiong L, Maddern GJ. Systematic review and meta-analysis of survival and disease recurrence after radiofrequency ablation for hepatocellular carcinoma. Br J Surg 2011; 98: 1210-1224
  • 3 Antoch G, Kuehl H, Vogt FM et al. Value of CT volume imaging for optimal placement of radiofrequency ablation probes in liver lesions. J Vasc Interv Radiol 2002; 13: 1155-1161
  • 4 Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Roentgenol Am J Roentgenol 2000; 174: 323-331
  • 5 Kelekis AD, Terraz S, Roggan A et al. Percutaneous treatment of liver tumors with an adapted probe for cooled-tip, impedance-controlled radio-frequency ablation under open-magnet MR guidance: initial results. Eur Radiol 2003; 13: 1100-1105
  • 6 Will K, Krug J, Jungnickel K et al. MR-compatible RF ablation system for online treatment monitoring using MR thermometry. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 1601-1604
  • 7 Hofer S, Oberholzer C, Beck S et al. Ultrasound-guided radiofrequency ablation (RFA) for inoperable gastrointestinal liver metastases. Ultraschall in Med 2008; 29: 388-392
  • 8 Rossi S, Di Stasi M, Buscarini E et al. Percutaneous RF interstitial thermal ablation in the treatment of hepatic cancer. Am J Roentgenol Am J Roentgenol 1996; 167: 759-768
  • 9 Solbiati L, Ierace T, Goldberg SN et al. Percutaneous US-guided radio-frequency tissue ablation of liver metastases: treatment and follow-up in 16 patients. Radiology 1997; 202: 195-203
  • 10 Leyendecker JR, Dodd 3rd GD, Halff GA et al. Sonographically observed echogenic response during intraoperative radiofrequency ablation of cirrhotic livers: pathologic correlation. Am J Roentgenol Am J Roentgenol 2002; 178: 1147-1151
  • 11 Lorentzen T, Skjoldbye BO, Nolsoe CP. Microwave ablation of liver metastases guided by contrast-enhanced ultrasound: experience with 125 metastases in 39 patients. Ultraschall in Med 2011; 32: 492-496
  • 12 Miyamoto N, Hiramatsu K, Tsuchiya K et al. Contrast-enhanced sonography-guided radiofrequency ablation for the local recurrence of previously treated hepatocellular carcinoma undetected by B-mode sonography. J Clin Ultrasound 2010; 38: 339-345
  • 13 Seitz K, Bernatik T, Strobel D et al. Contrast-enhanced ultrasound (CEUS) for the characterization of focal liver lesions in clinical practice (DEGUM Multicenter Trial): CEUS vs. MRI--a prospective comparison in 269 patients. Ultraschall in Med 2010; 31: 492-499
  • 14 Bamber J, Cosgrove D, Dietrich CF et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall in Med 2013; 34: 169-184
  • 15 Cosgrove D, Piscaglia F, Bamber J et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall in Med 2013; 34: 238-253
  • 16 Frieser M, Kiesel J, Lindner A et al. Efficacy of contrast-enhanced US versus CT or MRI for the therapeutic control of percutaneous radiofrequency ablation in the case of hepatic malignancies. Ultraschall in Med 2011; 32: 148-153
  • 17 Varghese T, Techavipoo U, Liu W et al. Elastographic measurement of the area and volume of thermal lesions resulting from radiofrequency ablation: pathologic correlation. Am J Roentgenol Am J Roentgenol 2003; 181: 701-707
  • 18 Varghese T, Zagzebski JA, Frank G et al. Elastographic imaging using a handheld compressor. Ultrason Imaging 2002; 24: 25-35
  • 19 Bharat S, Techavipoo U, Kiss MZ et al. Monitoring stiffness changes in lesions after radiofrequency ablation at different temperatures and durations of ablation. Ultrasound Med Biol 2005; 31: 415-422
  • 20 Wiggermann P, Jung EM, Glockner S et al. Real-time-Elastografie von Leberlasionen bei Thermotherapie in vitro: Korrelation zur Histopathologie. Ultraschall in Med 2011; 33: 170-174
  • 21 Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45: 255-268
  • 22 Goldberg SN, Gazelle GS, Halpern EF et al. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol 1996; 3: 212-218
  • 23 Zervas NT, Kuwayama A. Pathological characteristics of experimental thermal lesions. Comparison of induction heating and radiofrequency electrocoagulation. J Neurosurg 1972; 37: 418-422
  • 24 Hori T, Nagata K, Hasuike S et al. Risk factors for the local recurrence of hepatocellular carcinoma after a single session of percutaneous radiofrequency ablation. J Gastroenterol 2003; 38: 977-981
  • 25 Poon RT, Ng KK, Lam CM et al. Effectiveness of radiofrequency ablation for hepatocellular carcinomas larger than 3 cm in diameter. Arch Surg 2004; 139: 281-287
  • 26 Cha CH, Lee Jr FT, Gurney JM et al. CT versus sonography for monitoring radiofrequency ablation in a porcine liver. Am J Roentgenol Am J Roentgenol 2000; 175: 705-711
  • 27 Ricci P, Cantisani V, Drudi F et al. Is contrast-enhanced US alternative to spiral CT in the assessment of treatment outcome of radiofrequency ablation in hepatocellular carcinoma?. Ultraschall in Med 2009; 30: 252-258
  • 28 Pareek G, Wilkinson ER, Bharat S et al. Elastographic measurements of in-vivo radiofrequency ablation lesions of the kidney. J Endourol 2006; 20: 959-964
  • 29 Havre RF, Waage JR, Gilja OH et al. Real-Time Elastography: Strain Ratio Measurements Are Influenced by the Position of the Reference Area. Ultraschall in Med 2011; 33: 559-568 DOI: 10.1055/s-0031-1273247.