Int J Sports Med 2014; 35(06): 517-521
DOI: 10.1055/s-0033-1353176
Training & Testing
© Georg Thieme Verlag KG Stuttgart · New York

Comparison of Selected Lactate Threshold Parameters with Maximal Lactate Steady State in Cycling

T. Hauser*
1   Sportsmedicine/-biology, Chemnitz University of Technology, Chemnitz, Germany
,
J. Adam*
2   Department of Internal Medicine/Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
,
H. Schulz
1   Sportsmedicine/-biology, Chemnitz University of Technology, Chemnitz, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf



accepted after revision 14. Juli 2013

Publikationsdatum:
13. November 2013 (online)

Abstract

The aim of the present investigation was to compare power at “onset of blood lactate accumulation” (OBLA), “individual anaerobic threshold” (IAT) and “+1.5 mmol ∙ l−1 lactate model” with power in maximal lactate steady state (MLSS) in cycling. However, there is a lack of studies concerning the absolute individual differences between different lactate parameters and MLSS.

A total of 57 male participants performed several 30-min constant-load tests to determine MLSS by measuring blood lactate concentration (BLC). Depending on BLC, power was increased or decreased by 10 W in the following 30-min test. For detecting power at different threshold parameters, an incremental test was performed that began at 40 W and increased by 40 W every 4 min.

Highly significant correlations were found between OBLA and MLSS: r=0.89 (mean difference −7.4 W); IAT and MLSS: r=0.83 (mean difference 12.4W), “+1.5 mmol ∙ l−1 lactate model” and MLSS: r=0.88 (mean difference −37.4W). On average, the parameters of OBLA and IAT approximate MLSS with no significant differences. The “+1.5 mmol ∙ l−1 lactate model” underestimates MLSS significantly.

Based on Bland-and-Altman, the comparison of power of all threshold parameters with power in MLSS shows great individual differences despite the high regression coefficients and low mean differences between these methods.

* These authors contributed equally to this article.


 
  • References

  • 1 Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc 1997; 27: 863-867
  • 2 Beneke R. Methodological aspects of maximal lactate steady state-implications for performance testing. Eur J Appl Physiol 2003; 89: 95-99
  • 3 Beneke R, Hütler M, Leithäuser RM. Maximal lactate-steady-state independent of performance. Med Sci Sports Exerc 2000; 32: 1135-1139
  • 4 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310
  • 5 Coen B. Individuelle anaerobe Schwelle. Methodik und Anwendung in der sportmedizinischen Leistungsdiagnostik und Trainingssteuerung leichtathletischer Laufdisziplinen. Köln: Sportverl. Strauß. 1997
  • 6 Dickhuth H-H, Yin L, Niess A, Röcker K, Mayer F, Heitkamp HC, Horstmann T. Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med 1999; 20: 122-127
  • 7 Dörr C. Untersuchung der Validität verschiedener Laktatschwellenkonzepte an Ausdauersportlern. Justus Liebig University Giessen 2010;
  • 8 Faude O, Kindermann W, Meyer T. Lactate threshold parameters: how valid are they?. Sports Med 2009; 39: 469-490
  • 9 Harriss DJ, Atkinson G. Update – Ethical standards in sport and exercise science research. Int J Sports Med 2011; 32: 819-821
  • 10 Hauser T, Bartsch D, Schulz H. Reliability of Power and Lactate-Concentration of Maximal Lactate Steady-State during Constant-Load Tests in Cycling. Dt Z Sportmed 2011; 10: 16-19
  • 11 Heck H, Beneke R. 30 Years of Lactate Thresholds – what remains to be done? Dt. Z Sportmed 2008; 59: 297-302
  • 12 Heck H. Energiestoffwechsel und medizinische Leistungsdiagnostik. Schorndorf: Hofmann; 1990
  • 13 Heck H. Laktat in der Leistungsdiagnostik. Schorndorf: Hofmann; 1990
  • 14 Heck H, Rosskopf P. Die Laktat- Leistungsdiagnostik – valider ohne Schwellenkonzepte. TW Sport+Medizin 1993; 5: 344-352
  • 15 Heck H, Rosskopf P. Grundlagen verschiedener Laktatschwellenkonzepte und ihre Bedeutung für die Trainingssteuerung. In Clasing D. (ed.). Stellenwert der Laktatbestimmung in der Leistungsdiagnostik. Stuttgart, Germany: G. Fischer; 1994: 111-131
  • 16 Heck H, Hess G, Mader A. Vergleichende Untersuchungen zu verschiedenen Laktat-Schwellenkonzepten. Dt Z Sportmed 1985; 1+2: 19-25; 40–52
  • 17 Hoogeveen AR, Hoogsteen J, Shep G. The maximal lactate steady state in elite endurance athletes. Jpn J Physiol 1997; 47: 481-485
  • 18 Jones AM, Doust JH. The validity of the lactate minimum test for determination of the maximal lactate steady state. Med Sci Sports Exerc 1998; 30: 1304-1313
  • 19 Mader A, Liesen H, Heck H, Phillipi H, Rost R, Schürch P, Hollmann W. Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Dt Z Sportmed 1976; 27: 80-88; 109–112
  • 20 Marées H. Sportphysiologie. Köln: Sportverl. Strauß; 2003
  • 21 McLellan TM, Jacobs I. Reliability, reproducibility and validity of the individual anaerobic threshold. Eur J Appl Physiol 1993; 67: 125-131
  • 22 Sahlin K, Harris RC, Nylind B, Hultman E. Lactate content and pH in muscle obtained after dynamic exercise. Pflugers Arch 1976; 367: 143-149
  • 23 Sjödin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 1981; 2: 23-26
  • 24 Stegmann H, Kindermann W, Schnabel A. Lactate Kinetics and Individual Anaerobic Threshold. Int J Sports Med 1981; 2: 160-165
  • 25 Urhausen A, Coen B, Weiler B, Kindermann W. Individual Anaerobic Threshold and Maximum Lactate Steady State. Int J Sports Med 1993; 14: 134-139
  • 26 Van Schuylenbergh R, Vanden Eynde B, Hespel P. Correlations Between Lactate and Ventilatory Thresholds and the Maximal Lactate Steady State in Elite Cyclists. Int J Sports Med 2004; 25: 403-408