Planta Med 2013; 79(14): 1362-1369
DOI: 10.1055/s-0033-1350646
Natural Product Chemistry
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Cardenolides and Bufadienolide Glycosides from Kalanchoe tubiflora and Evaluation of Cytotoxicity

Hui-Chi Huang
1   Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
Ming-Kuem Lin
1   Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
Hsin-Ling Yang
2   Department of Nutrition, China Medical University, Taichung, Taiwan
You-Cheng Hseu
3   Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung, Taiwan
Chih-Chuang Liaw
4   Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
Yen-Hsueh Tseng
5   Department of Forestry, National Chung Hsing University, Taichung, Taiwan
Minoru Tsuzuki
6   Nihon Pharmaceutical University, Saitama, Japan
Yueh-Hsiung Kuo
1   Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
7   Tsuzuki Institute for Traditional Medicine, College of Pharmacy, China Medical University, Taichung, Taiwan
› Author Affiliations
Further Information

Publication History

received 21 January 2013
revised 25 March 2013

accepted 25 June 2013

Publication Date:
22 July 2013 (online)


Two new cardenolides, kalantubolide A (1) and kalantubolide B (2), and two bufadienolide glycosides, kalantuboside A (3) and kalantuboside B (4), as well as eleven known compounds were isolated and characterized from the EtOH extract of Kalanchoe tubiflora. The structures of compounds were assigned based on 1D and 2D NMR spectroscopic analyses including HMQC, HMBC, and NOESY. Biological evaluation indicated that cardenolides (12) and bufadienolide glycosides (37) showed strong cytotoxicity against four human tumor cell lines (A549, Cal-27, A2058, and HL-60) with IC50 values ranging from 0.01 µM to 10.66 µM. Cardenolides (12) also displayed significant cytotoxicity toward HL-60 tumor cell line. In addition, compounds 3, 4, 5, 6, and 7 blocked the cell cycle in the G2/M-phase and induced apoptosis in HL-60 cells.

Supporting Information

  • References

  • 1 Tolken HR, Leistner OA. Bryophyllum delagoense Madagascar and naturalized in many countries. Flowering Plants Africa 1986; 49: 1938
  • 2 Chernetskyy MA. The role of morpho-anatomical traits of the leaves in the taxonomy of Kalanchoideae Berg. subfamily (Crassulaceae DC.). Mod Phytomorphol 2012; 1: 15-18
  • 3 Kao MT. Popular herbal remedies of Taiwan (3). Odessa: SMC Publish Inc.; 1996: 34
  • 4 Wu PL, Hsu YL, Wu TS, Bastow KF, Lee KH. Kalanchosides A–C, new cytotoxic bufadienolides from the aerial parts of Kalanchoe gracilis . Org Lett 2006; 8: 5207-5210
  • 5 Supratman U, Fujita T, Akiyama K, Hayashi H. New insecticidal bufadienolide, bryophyllin C, from Kalanchoe pinnata . Biosci Biotechnol Biochem 2000; 64: 1310-1312
  • 6 Supratman U, Fujita T, Akiyama K, Hayashi H. Insecticidal compounds from Kalanchoe daigremontiana × tubiflora . Phytochemistry 2001; 58: 311-314
  • 7 Costa SS, Jossang A, Bodo B, Souza ML, Moraes VL. Patuletin acetylrhamnosides from Kalanchoe brasiliensis as inhibitors of human lymphocyte proliferative activity. J Nat Prod 1994; 57: 1503-1510
  • 8 Muzitano MF, Cruz EA, de Almeida AP, Da Silva SA, Kaiser CR, Guette C, Rossi-Bergmann B, Costa SS. Quercitrin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata . Planta Med 2006; 72: 81-83
  • 9 Muzitano MF, Tinoco LW, Guette C, Kaiser CR, Rossi-Bergmann B, Costa SS. The antileishmanial activity assessment of unusual flavonoids from Kalanchoe pinnata . Phytochemistry 2006; 67: 2071-2077
  • 10 Gaind KN, Singla AK, Boar RB, Copsey DB. Triterpenoids and sterols of Kalanchoe spathulata . Phytochemistry 1976; 15: 1999-2000
  • 11 Gaind KN, Gupta RL. Flavonoid glycosides from Kalanchoe pinnata . Planta Med 1971; 20: 368-373
  • 12 Gaind KN, Gupta RL. Phenolic components from the leaves of Kalanchoe pinnata . Planta Med 1973; 23: 149-153
  • 13 van Maarseveen C, Jetter R. Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves. Phytochemistry 2009; 70: 899-906
  • 14 Almeida AP, Da Silva SA, Souza ML, Lima LM, Rossi-Bergmann B, de Moraes VL, Costa SS. Isolation and chemical analysis of a fatty acid fraction of Kalanchoe pinnata with a potent lymphocyte suppressive activity. Planta Med 2000; 66: 134-137
  • 15 Costa SS, Mendes de Souza ML, Ibrahim T, de Melo GO, de Almeida AP, Guette C, Férézou JP, Koatz VLG. Kalanchosine dimalate, an anti-inflammatory salt from Kalanchoe brasiliensis . J Nat Prod 2006; 69: 815-818
  • 16 Supratman U, Fujita T, Akiyama K, Hayashi H, Murakami A, Sakai H, Koshimizu K, Ohigashi H. Anti-tumor promoting activity of bufadienolides from Kalanchoe pinnata and K. daigremontiana × tubiflora . Biosci Biotechnol Biochem 2001; 65: 947-949
  • 17 Yamagishi T, Haruna M, Yan XZ, Chang JJ, Lee KH. Antitumor agents, 110. Bryophyllin b, a novel potent cytotoxic bufadienolide from Bryophyllum pinnatum . J Nat Prod 1989; 52: 1071-1079
  • 18 Capon RJ, Macleod JK, Oelrichs PB. Structure elucidation of a new bufadienolide toxin from the flowers of Bryophyllum tubiflorum Harv. (Crassulaceae). J Chem Res 1985; 11: 333
  • 19 Capon RJ, MacLeod JK. Structure elucidation of a new bufadienolide toxin from the flowers of Bryophyllum tubiflorum Harv. (Crassulaceae). J Chem Res 1985; 3666-3685
  • 20 Capon RJ, MacLeod JK, Oelrichs PB. Bryotoxins B and C, toxic bufadienolide orthoacetates from the flowers of Bryophyllum tubiflorum (Crassulaceae). Aust J Chem 1986; 39: 1711-1715
  • 21 McKenzie RA, Franke FP, Dunster PJ. The toxicity for cattle of bufadienolide cardiac glycosides from Bryophyllum tubiflorum flowers. Aust Vet J 1989; 11: 374-376
  • 22 Gao H, Popescu R, Kopp B, Wang Z. Bufadienolides and their antitumor activity. Nat Prod Rep 2011; 28: 953-969
  • 23 Gao H, Zehl M, Leitner A, Wu X, Wang Z, Kopp B. Comparison of toad venoms from different Bufo species by HPLC and LC-DAD-MS/MS. J Ethnopharmacol 2010; 131: 368-376
  • 24 Yamagishi T, Yan XZ, Wu RY, McPhail DR, McPhail AT, Lee KH. Structure and stereochemistry of bryophyllin-A, a novel potent cytotoxic bufadienolide orthoacetate from Bryophyllum pinnatum . Chem Pharm Bull 1988; 36: 1615-1617
  • 25 Fiorentino A, DʼAbrosca B, DellaGreca M, Izzo A, Natale A, Pascarella MT, Pacifico S, Zarrelli A, Monaco P. Chemical characterization of new oxylipins from Cestrum parqui, and their effects on seed germination and early seedling growth. Chem Biodivers 2008; 5: 1780-1791
  • 26 Kaya K, Kusumi T. Identification of pentahydroxystearic acid-containing taurolipid (taurolipid C) isolated from Tetrahymena thermophile . Biochim Biophys Acta 1990; 1042: 198-203
  • 27 Yanga CB, Zhang F, Denga MC, Hea GY, Yuec JM, Lua RH. A new ellagitannin from the fruit of Phyllanthus emblica L. J Chin Chem Soc 2007; 54: 1615-1618
  • 28 Ambarsing PR, Milind KP. Chemical investigation and biological activity of phytoconstituents from methanol extract of Abutilon indicum leaves. J Chem Pharm Res 2012; 4: 3959-3965
  • 29 Billah M, Quader MA. Sterols and sterol glucoside from Phyllanthus species. Dhaka Univ J Sci 2012; 60: 5-10
  • 30 Shi LS, Liao YR, Su MJ, Lee AS, Kuom PC, Damu AG, Kuo SC, Sun HD, Lee KH, Wu TS. Cardiac glycosides from Antiaris toxicaria with potent cardiotonic activity. J Nat Prod 2010; 73: 1214-1222
  • 31 Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytologist 2012; 194: 28-45
  • 32 Crouch NR, Langlois AD, Mulholland A. Bufadienolides from the southern African Drimia depressa (Hyacinthaceae: Urgineoideae). Phytochemistry 2007; 68: 1731-1734
  • 33 Huang HC, Wu MD, Tsai WJ, Liao SC, Liaw CC, Hsu LC, Wu YC, Kuo YH. Triterpenoid saponins from the fruits and galls of Sapindus mukorossi . Phytochemistry 2008; 69: 1609-1616
  • 34 Morikawa T, Xie YY, Asao Y, Okamoto M, Yamashita C, Muraoka O, Matsuda H, Pongpiriyadacha Y, Yuan D, Yoshikawa M. Oleanane-type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak . Phytochemistry 2009; 70: 1166-1172
  • 35 Yang HL, Kuo YH, Tsai CT, Huang YT, Chen SC, Chang HW, Lin E, Lin WH, Hseu YC. Anti-metastatic activities of Antrodia camphorata against human breast cancer cells mediated through suppression of the MAPK signaling pathway. Food Chem Toxicol 2011; 49: 290-298
  • 36 Lee MS, Chen CJ, Wan L, Koizumi A, Chang WT, Yang MJ, Lin WH, Tsai FJ, Lin MK. Quercetin is increased in heat-processed Cuscuta campestris seeds, which enhances the seedʼs anti-inflammatory and anti-proliferative activities. Process Biochem 2011; 46: 2248-2254
  • 37 Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 2006; 1: 1458-1461