Klinische Neurophysiologie 2013; 44(03): 204-208
DOI: 10.1055/s-0033-1347265
Niels-A.-Lassen-Preis 2013
© Georg Thieme Verlag KG Stuttgart · New York

Transkranielle Gleichstromstimulation verbessert kognitive Leistung und moduliert funktionelle Hirnaktivität und Konnektivität

Transcranial Direct Current Stimulation Improves Cognitive Performance and Modulates Functional Task-Specific Activation and Connectivity
D. Antonenko
1   Department of Neurology, Charité-Universitätsmedizin Berlin
,
R. Lindenberg
1   Department of Neurology, Charité-Universitätsmedizin Berlin
,
S. Hetzer
2   Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging
,
L. Ulm
1   Department of Neurology, Charité-Universitätsmedizin Berlin
,
K. Avirame
1   Department of Neurology, Charité-Universitätsmedizin Berlin
,
T. Flaisch
3   Department of Psychology, Universität Konstanz
,
A. Flöel
1   Department of Neurology, Charité-Universitätsmedizin Berlin
,
M. Meinzer
1   Department of Neurology, Charité-Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
26 June 2013 (online)

Zusammenfassung

Anodale transkranielle Gleichstromstimulation (anodal transcranial direct current stimulation, atDCS) kann kognitive Funktionen bei Menschen verbessern. Die neuronalen Grundlagen ihrer Funktionsweise wurden allerdings bisher noch unzureichend untersucht. In einer Plazebo-kon­trollierten Studie untersuchten wir daher die neuronalen Korrelate der Leistungsverbesserung in einer semantischen Wortfindungsaufgabe mittels funktioneller Magnetresonanztomografie (fMRT) bei gleichzeitiger Stimulation des linken Gyrus frontalis inferior (IFG), einem zentralen sprachrelevanten Gehirnareal. atDCS wurde dabei im MRT während der Aufgabendurchführung appliziert. Simultan gemessene aufgaben-spezifische sowie aufgaben-unabhängige Ruhe-fMRT (sog. resting-state) Messungen dienten zur Charakterisierung der Auswirkung von atDCS auf Hirnfunktionen. Der durch atDCS signifikant verbesserte Wortabruf ging mit einer selektiven Aktivitätsreduktion im linken ventralen IFG einher, welcher speziell für semantische Abrufprozesse eine Rolle spielt. Des Weiteren erhöhte atDCS die funktionelle Konnektivität des linken IFG und anderer sprachrelevanter Hirnareale im Rahmen der Ruhe-fMRT Untersuchung. Zusammenfassend konnte gezeigt werden, dass atDCS bedingte Leistungsverbesserungen mit charakteristischen Veränderungen von Hirnaktivität- und Konnektivität assoziiert sind, die u. U. erhöhte Verarbeitungseffizienz widerspiegeln.

Abstract

Excitatory anodal transcranial direct current stimulation (atDCS) can improve human cognitive functions, but neural underpinnings of its mode of action remain elusive. In a cross-over placebo (“sham”) controlled study we used functional magnetic resonance imaging (fMRI) to investigate neurofunctional correlates of improved language functions induced by atDCS over a core language area, the left inferior frontal gyrus (IFG). Intrascanner transcranial direct current stimulation-induced changes in overt semantic word generation assessed behavioural modulation; task-related and task-independent (resting state) fMRI characterised language network changes. Improved word retrieval during atDCS was paralleled by selectively reduced task-related activation in the left ventral IFG, an area specifically implicated in semantic retrieval processes. Under atDCS, resting state fMRI revealed increased connectivity of the left IFG and additional major hubs overlapping with the language network. In conclusion, atDCS modulates endogenous low-frequency oscillations in a distributed set of functionally connected brain areas, possibly inducing more efficient processing in critical task-relevant areas and improved behavioural performance.

 
  • Literatur

  • 1 Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist 2011; 17: 37-53
  • 2 Floel A, Meinzer M, Kirstein R et al. Short-term anomia training and electrical brain stimulation. Stroke 2011; 42: 2065-2067
  • 3 Floel A, Rosser N, Michka O et al. Noninvasive brain stimulation improves language learning. J Cogn Neurosci 2008; 20: 1415-1422
  • 4 Reis J, Schambra HM, Cohen LG et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA 2009; 106: 1590-1595
  • 5 Antal A, Nitsche MA, Kruse W et al. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci 2004; 16: 521-527
  • 6 Cattaneo Z, Pisoni A, Papagno C. Transcranial direct current stimulation over Broca’s region improves phonemic and semantic fluency in healthy individuals. Neuroscience 2011; 183: 64-70
  • 7 Floel A, Suttorp W, Kohl O et al. Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol Aging 2012; 33: 1682-1689
  • 8 Holland R, Leff AP, Josephs O et al. Speech facilitation by left inferior frontal cortex stimulation. Curr Biol 2011; 21: 1403-1407
  • 9 Iyer MB, Mattu U, Grafman J et al. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 2005; 64: 872-875
  • 10 Antonenko D, Meinzer M, Lindenberg R et al. Grammar learning in older adults is linked to white matter microstructure and functional connectivity. NeuroImage 2012; 62: 1667-1674
  • 11 Thompson-Schill SL, D’Esposito M, Aguirre GK et al. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci USA 1997; 94: 14792-14797
  • 12 Antal A, Polania R, Schmidt-Samoa C et al. Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage 2011; 55: 590-596
  • 13 Lohmann G, Margulies DS, Horstmann A et al. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 2010; 5: e10232
  • 14 Taubert M, Lohmann G, Margulies DS et al. Long-term effects of motor training on resting-state networks and underlying brain structure. NeuroImage 2011; 57: 1492-1498
  • 15 Meinzer M, Flaisch T, Wilser L et al. Neural signatures of semantic and phonemic fluency in young and old adults. J Cogn Neurosci 2009; 21: 2007-2018
  • 16 Gandiga PC, Hummel FC, Cohen LG Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 2006; 117: 845-850
  • 17 Meinzer M, Seeds L, Flaisch T et al. Impact of changed positive and negative task-related brain activity on word-retrieval in aging. Neurobiol Aging 2012; 33: 656-669
  • 18 Meinzer M, Flaisch T, Seeds L et al. Same Modulation but Different Starting Points: Performance Modulates Age Differences in Inferior Frontal Cortex Activity during Word-Retrieval. PLoS ONE 2012; 7: e33631
  • 19 Meinzer M, Antonenko D, Lindenberg R et al. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J Neurosci 2012; 32: 1859-1866
  • 20 Nagel IE, Schumacher EH, Goebel R et al. Functional MRI investigation of verbal selection mechanisms in lateral prefrontal cortex. NeuroImage 2008; 43: 801-807
  • 21 Lohmann G, Muller K, Bosch V et al. LIPSIA – a new software system for the evaluation of functional magnetic resonance images of the human brain. Comput Med Imaging Graph 2001; 25: 449-457
  • 22 Achard S, Salvador R, Whitcher B et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 2006; 26: 63-72
  • 23 Salvador R, Suckling J, Schwarzbauer C et al. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci 2005; 360: 937-946
  • 24 Price CJ. The anatomy of language: contributions from functional neuroimaging. J Anat 2000; 197 (Pt 3) 335-359
  • 25 Poeppel D, Hickok G. Towards a new functional anatomy of language. Cognition 2004; 92: 1-12
  • 26 Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 1994; 263: 1287-1289
  • 27 Gonsalves BD, Kahn I, Curran T et al. Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron 2005; 47: 751-761
  • 28 Abutalebi J. Neural aspects of second language representation and language control. Acta Psychol (Amst) 2008; 128: 466-478
  • 29 Achard P, De Schutter E. Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2006; 2: e94
  • 30 Catani M, Jones DK, ffytche DH. Perisylvian language networks of the human brain. Ann Neurol 2005; 57: 8-16