Synthesis 2014; 46(11): 1440-1447
DOI: 10.1055/s-0033-1341223
short review
© Georg Thieme Verlag Stuttgart · New York

Silver-Mediated Perfluoroalkylation Reactions

Andreas Hafner
a  Institute of Organic Chemistry, KIT-Campus South, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany   Fax: +49(721)60848581   Email: braese@kit.edu
,
Nicole Jung
b  Institute of Toxicology and Genetics, KIT-Campus North, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
,
Stefan Bräse*
a  Institute of Organic Chemistry, KIT-Campus South, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany   Fax: +49(721)60848581   Email: braese@kit.edu
b  Institute of Toxicology and Genetics, KIT-Campus North, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
› Author Affiliations
Further Information

Publication History

Received: 10 February 2014

Accepted after revision: 26 March 2014

Publication Date:
08 May 2014 (eFirst)

Dedicated to Armin de Meijere on the occasion of his 75th birthday

Abstract

Direct perfluoroalkylation reactions, especially trifluoromethylations of organic substrates, are of particular importance in modern organic chemistry as they allow rapid access to perfluoroalkylated molecules. In contrast to common metal-mediated perfluoroalkylations­, recently developed silver-mediated perfluoroalkylation protocols offer the opportunity for orthogonal introduction of fluorine containing groups in organic compounds. This review gathers recent progress on silver-mediated perfluoroalkylation reactions and gives an overview over efficient syntheses, properties, and reactivity of perfluoroorganosilver(I) compounds. In addition, cooperative effects with copper-mediated processes are discussed.

1 Introduction

2 Syntheses and Properties of Perfluoroorganosilver Compounds­

3 Silver-Mediated Perfluoroalkylations

3.1 Perfluoroorganosilver Compounds in Copper-Mediated Perfluoroalkylations

3.2 Perfluoroorganosilver Compounds as Precursors for Radicals­

3.3 Perfluoroorganosilver Compounds as Nucleophilic Reagents­

3.4 Silver-Catalyzed Perfluoroalkylations

4 Conclusion and Outlook

 
  • References

    • 2a Smart BE. J. Fluorine Chem. 2001; 109: 3
    • 2b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2c Müller K, Faeh C, Diederich F. Science (Washington, D.C.) 2007; 317: 1881
    • 3a Liu H, Gu ZH, Jiang XF. Adv. Synth. Catal. 2013; 355: 617
    • 3b Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 3c Jin Z, Hammond GB, Xu B. Aldrichimica Acta 2012; 45: 67
    • 3d Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
  • 4 Liu TF, Shen QL. Eur. J. Org. Chem. 2012; 6679
    • 5a Eujen R, Hoge B, Brauer DJ. Inorg. Chem. 1997; 36: 1464
    • 5b Naumann D, Tyrra W, Trinius F, Wessel W, Roy T. J. Fluorine Chem. 2000; 101: 131
  • 6 Tyrra W, Naumann D. J. Fluorine Chem. 2004; 125: 823
    • 7a Tyrra W. Heteroat. Chem. 2002; 13: 561
    • 7b Tyrra WE. J. Fluorine Chem. 2001; 112: 149
    • 8a Miller WT, Burnard RJ. J. Am. Chem. Soc. 1968; 90: 7367
    • 8b Sun KK, Miller WT. J. Am. Chem. Soc. 1970; 92: 6985
    • 8c Dyatkin BL, Martynov BI, Martynova LG, Kizim NG, Sterlin SR, Stum-Brevichute ZA, Fedorov LA. J. Organomet. Chem. 1973; 57: 423
    • 8d Banks RE, Haszeldine RN, Taylor DR, Webb G. Tetrahedron Lett. 1970; 11: 5215
    • 8e Miller WT, Snider RH, Hummel RJ. J. Am. Chem. Soc. 1969; 91: 6532
  • 9 Naumann D, Wessel W, Hahn J, Tyrra W. J. Organomet. Chem. 1997; 547: 79
    • 10a Burch RR, Calabrese JC. J. Am. Chem. Soc. 1986; 108: 5359
    • 10b Tyrra W, Wickleder MS. Z. Anorg. Allg. Chem. 2002; 628: 1841
    • 10c Jeffries PM, Wilson SR, Girolami GS. J. Organomet. Chem. 1993; 449: 203
    • 10d Weng ZQ, Lee R, Jia WG, Yuan YF, Wang WF, Feng X, Huang KW. Organometallics 2011; 30: 3229
    • 10e Kuprat M, Lehmann M, Schulz A, Villinger A. Organometallics 2010; 29: 1421
  • 11 Haszeldine RN. Nature (London) 1950; 165: 152
  • 12 Probst A, Raab K, Ulm K, Vonwerner K. J. Fluorine Chem. 1987; 37: 223
  • 13 Dubot G, Lecolier S, Mansuy D, Normant JF. J. Organomet. Chem. 1972; 42: C105
  • 14 Rossman DI, Muller AJ, Lewis EO. J. Fluorine Chem. 1991; 55: 221
  • 15 Noftle RE, Fox WB. J. Fluorine Chem. 1977; 9: 219
  • 16 Banks RE, Dickinson N, Morrissey AP, Richards A. J. Fluorine Chem. 1984; 26: 87
  • 17 Hafner A, Bräse S. Adv. Synth. Catal. 2011; 353: 3044
  • 18 Fu D, Zhang J, Cao S. J. Fluorine Chem. 2013; 156: 170
  • 19 Ye YD, Lee SH, Sanford MS. Org. Lett. 2011; 13: 5464
  • 20 Hafner A, Bräse S. Angew. Chem. Int. Ed. 2012; 51: 3713
    • 21a Vanderheiden S, Bulat B, Zevaco T, Jung N, Brase S. Chem. Commun. 2011; 47: 9063
    • 21b Kimball DB, Haley MM. Angew. Chem. Int. Ed. 2002; 41: 3338
    • 21c Bräse S. Acc. Chem. Res. 2004; 37: 805
    • 21d Hafner A, Bräse S. Adv. Synth. Catal. 2013; 355: 996
    • 21e Döbele M, Vanderheiden S, Jung N, Bräse S. Angew. Chem. Int. Ed. 2010; 49: 5986
  • 22 Hafner A, Bihlmeier A, Nieger M, Klopper W, Bräse S. J. Org. Chem. 2013; 78: 7938
  • 23 Hafner A, Feuerstein TJ, Bräse S. Org. Lett. 2013; 15: 3468
    • 24a Bartlett PD, Wheland RC. J. Am. Chem. Soc. 1972; 94: 2145
    • 24b Hafner A, Fischer TS, Bräse S. Eur. J. Org. Chem. 2013; 7996
  • 25 Paleta O, Svoboda J, Dedek V. J. Fluorine Chem. 1983; 23: 171
  • 26 Gao B, Zhao Y, Ni C, Hu J. Org. Lett. 2014; 16: 102
  • 27 Kremlev MM, Mushta AI, Tyrra W, Naumann D, Fischer HT. M, Yagupolskii YL. J. Fluorine Chem. 2007; 128: 1385
  • 28 Zeng YW, Zhang LJ, Zhao YC, Ni CF, Zhao JW, Hu JB. J. Am. Chem. Soc. 2013; 135: 2955
  • 29 Wang KP, Yun SY, Mamidipalli P, Lee D. Chem. Sci. 2013; 4: 3205
    • 30a Wang X, Xu Y, Mo FY, Ji GJ, Qiu D, Feng JJ, Ye YX, Zhang SN, Zhang Y, Wang JB. J. Am. Chem. Soc. 2013; 135: 10330
    • 30b Browne DL. Angew. Chem. Int. Ed. 2014; 53: 1482
  • 31 Wu XY, Chu LL, Qing FL. Angew. Chem. Int. Ed. 2013; 52: 2198
  • 32 Seo S, Taylor JB, Greaney MF. Chem. Commun. 2013; 49: 6385