Synlett 2014; 25(09): 1307-1311
DOI: 10.1055/s-0033-1341057
letter
© Georg Thieme Verlag Stuttgart · New York

A Practical Method for Metal-Free Radical Trifluoromethylation of Styrenes with NaSO2CF3

Hai-Qing Luo*
Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China   Fax: +86(797)8393670   eMail: luohaiq@sina.com   eMail: luoxuzhong@hotmail.com
,
Zhi-Peng Zhang
Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China   Fax: +86(797)8393670   eMail: luohaiq@sina.com   eMail: luoxuzhong@hotmail.com
,
Wen Dong
Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China   Fax: +86(797)8393670   eMail: luohaiq@sina.com   eMail: luoxuzhong@hotmail.com
,
Xu-Zhong Luo*
Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China   Fax: +86(797)8393670   eMail: luohaiq@sina.com   eMail: luoxuzhong@hotmail.com
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 18. Januar 2014

Accepted after revision: 02. März 2014

Publikationsdatum:
27. März 2014 (online)


Abstract

A mild and practical protocol for the metal-free trifluoromethylation of styrenes using NaSO2CF3 (Langlois reagent) and TBHP was developed. The approach provides efficient access to α-trifluoromethylated ketones and alcohols in moderate to good yields.

Supporting Information

 
  • References and notes

    • 1a Banks RE. Organofluorine Chemicals and their Industrial Applications. Ellis Horwood; West Sussex: 1979
    • 1b Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Chichester: 2009
    • 1c Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1d Hird M. Chem. Soc. Rev. 2007; 36: 2070
    • 1e Kirk KL. Org. Process Res. Dev. 2008; 12: 305
    • 2a For an important early review on the subject, see: Welch JT. Tetrahedron 1987; 43: 3123
    • 2b Special Issue on ‘Fluorine in the Life Sciences’: ChemBioChem 2004; 5: 557
    • 2c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 3a Litvinas ND, Fier PS, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 536
    • 3b Cho EJ, Senecal TD, Kinzel T, Zhang Y, Watson DA, Buchwald SL. Science 2010; 328: 1679
    • 3c Morimoto H, Tsubogo T, Litvinas ND, Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 3793
    • 4a Fujiwara Y, Dixon JA, O’Hara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herle B, Sach N, Collins MR, Ishihara Y, Baran PS. Nature 2012; 492: 95
    • 4b Ji YN, Brueckl T, Baxter RD, Fujiwara Y, Seiple IB, Su S, Blackmond DG, Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
    • 5a Novák P, Lishchynskyi A, Grushin VV. Angew. Chem. Int. Ed. 2012; 51: 7767
    • 5b Wang X, Xu Y, Mo F, Ji G, Qiu D, Feng J, Ye Y, Zhang S, Zhang Y, Wang J. J. Am. Chem. Soc. 2013; 135: 10300
    • 6a Xu J, Luo D.-F, Xiao B, Liu Z.-J, Gong T.-J, Fu Y, Liu L. Chem. Commun. 2011; 47: 4300
    • 6b Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 7a Liu T, Shen Q. Org. Lett. 2011; 13: 2342
    • 7b Liu T, Shao X, Wu Y, Shen Q. Angew. Chem. Int. Ed. 2012; 51: 540
    • 7c Feng C, Loh T.-P. Chem. Sci. 2012; 3: 3458
    • 7d Dai J.-J, Fang C, Xiao B, Yi J, Xu J, Liu Z.-J, Lu X, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 8436
    • 8a Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
    • 8b Nagib DA, MacMillan DW. C. Nature 2011; 480: 224
    • 8c Qi Q, Shen Q, Lu L. J. Am. Chem. Soc. 2012; 134: 6548
    • 9a Cahard D, Ma J.-A. Chem. Rev. 2004; 104: 6119
    • 9b Itoh Y, Mikami Y. Org. Lett. 2005; 7: 649
    • 9c Kieltsch I, Eisenberger P, Stanek K, Togni A. Chimia 2008; 62: 260
    • 9d Uneyama K, Katagiri T, Amii H. Acc. Chem. Res. 2008; 41: 817
    • 9e Matousek V, Togni A, Bizet V, Cahard D. Org. Lett. 2011; 13: 5762
    • 9f Pham PV, Nagib DA, MacMillan DW. C. Angew. Chem. Int. Ed. 2011; 50: 6119
    • 9g Umemoto T, Ishihara S. J. Am. Chem. Soc. 1993; 115: 2156
    • 10a Novák P, Lishchynskyi A, Grushin VV. J. Am. Chem. Soc. 2012; 134: 16167
    • 10b Zanardi A, Novikov MA, Martin E, Benet-Buchholz J, Grushin VV. J. Am. Chem. Soc. 2011; 133: 20901
  • 11 He Z, Zhang R, Hu M, Li L, Ni C, Hu J. Chem. Sci. 2013; 4: 3478
  • 12 While this manuscript was in preparation, a silver-catalyzed oxidative trifluoromethylation of unactivated olefins was reported, see: Deb A, Manna S, Modak A, Patra T, Maity S, Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
    • 13a Zhang CP, Wang ZL, Chen QY, Zhang CT, Gu YC, Xiao JC. Chem. Commun. 2011; 47: 6632
    • 13b Wilger DJ, Gesmundo NJ, Nicewicz DA. Chem. Sci. 2013; 4: 3160
    • 14a Langlois BR, Laurent E, Roidot N. Tetrahedron Lett. 1991; 32: 7525
    • 14b Langlois BR, Laurent E, Roidot N. Tetrahedron Lett. 1992; 33: 1291
    • 15a Ye Y, Künzi SA, Sanford MS. Org. Lett. 2012; 14: 4979
    • 15b Yang Y.-D, Iwamoto K, Tokunaga E, Shibata N. Chem. Commun. 2013; 49: 5510
    • 16a Li Z, Cui Z, Liu Z.-Q. Org. Lett. 2013; 15: 406
    • 16b Lu Q, Liu C, Peng P, Liu Z, Fu L, Huang J, Lei A. Asian J. Org. Chem. 2014; 3: 273
  • 17 Typical Procedure: To a septum-capped 25 mL sealed tube with a magnetic stirring bar were added CF3SO2Na (1.8 mmol) and BQ (0.3 mmol) in MeCN–H2O (4:1; 4 mL) under O2, followed by the addition of styrene 1a (0.3 mmol) and tBuOOH (2.4 mmol). The sealed tube was screw capped and heated at 80 °C for 16–24 h (oil bath). Upon completion, the mixture was cooled to room temperature and diluted with H2O (10 mL). The aqueous layer was extracted with EtOAc (3 × 10 mL) and the combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (hexane) to provide pure products 2a and 3a in 57% combined yield. Purification by flash column chromatography on silica gel (hexanes–EtOAc, 20:1 v/v) gave the pure products. Compound 2a: Yield: 36%; white solid. 1H NMR (400 MHz, CDCl3): δ = 7.87 (d, J = 7.4 Hz, 2 H), 7.57 (t, J = 7.4 Hz, 1 H), 7.44 (t, J = 7.6 Hz, 2 H), 3.73 (q, J = 10.0 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 189.7 (q, J = 2.8 Hz), 135.7, 134.1, 128.9, 128.3, 124.0 (q, J = 276.7 Hz), 41.9 (q, J = 28.3 Hz). 19F NMR (376 MHz, CDCl3): δ = –62.1 (t, J = 10.0 Hz, 3F). Compound 3a: Yield: 21%; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.32–7.41 (m, 5 H), 7.08 (dd, J = 9.0, 3.6 Hz, 1 H), 2.56–2.70 (m, 1 H), 2.39–2.52 (m, 1 H), 2.25 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 142, 128.9, 128.4, 125.9 (q, J = 275.7 Hz), 125.7, 68.8 (d, J = 3.3 Hz), 42.9 (q, J = 26.9 Hz). 19F NMR (376 MHz, CDCl3): δ = –63.7 (t, J = 10.5 Hz, 3F). HRMS (EI): m/z [M + H]+ calcd. for C9H10F3O: 191.0684; found: 191.0688.