Synlett 2014; 25(09): 1319-1324
DOI: 10.1055/s-0033-1341054
letter
© Georg Thieme Verlag Stuttgart · New York

Self-Supported Ligands as a Platform for Catalysis: Use of a Polymeric Oxime in a Recyclable Palladacycle Precatalyst for Suzuki–Miyaura Reactions

Yun-Chin Yang
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China   Fax: +852 28571586   eMail: phtoy@hku.hk
,
Patrick H. Toy*
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China   Fax: +852 28571586   eMail: phtoy@hku.hk
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 29. Januar 2014

Accepted after revision: 02. März 2014

Publikationsdatum:
07. April 2014 (online)


Abstract

A self-supported oxime palladacycle precatalyst for ­Suzuki–Miyaura reactions was synthesized based on the polyether ether ketone architecture. This precatalyst was found to be highly efficient in Suzuki–Miyaura reactions when aryl bromides were used as substrates, but was less efficient in cross-coupling reactions when aryl chlorides were used. The polymeric palladacycle could be recovered and reused up to four times in such reactions, affording excellent yield of the desired product. The approach represents a novel strategy for generating such self-supported complexes for catalysis.

Supporting Information

 
  • References and Notes


    • For selected reviews and books, see:
    • 1a Bergbreiter DE. Chem. Rev. 2002; 102: 3345
    • 1b Combinatorial Chemistry on Solid Supports. Bräse S. Springer; New York: 2007
    • 1c The Power of Functional Resins in Organic Synthesis . Tulla-Puche J, Albericio F. Wiley-VCH; Weinheim: 2008
    • 1d Recoverable and Recyclable Catalysts . Benaglia M. John Wiley & Sons; Chichester: 2009
    • 1e Bergbreiter DE, Tian J, Hongfa C. Chem. Rev. 2009; 109: 530
    • 1f Lu J, Toy PH. Chem. Rev. 2009; 109: 815
    • 1g Solid-Phase Organic Synthesis: Concepts, Strategies, and Applications. Toy PH, Lam Y. John Wiley & Sons; Hoboken: 2012

      For a selected review and books, see:
    • 2a Wang Z, Chen G, Ding K. Chem. Rev. 2009; 109: 322
    • 2b Wee LH, Alaerts L, Martens JA, De Vos D In Metal-Organic Frameworks: Applications from Catalysis to Gas Storage . Farrusseng D. Wiley-VCH; Weinheim: 2011: 191
    • 2c Guo H, Ding K In Catalytic Methods in Asymmetric Synthesis: Advanced Materials, Techniques, and Applications. Gruttadauria M, Giacalone F. John Wiley & Sons; Hoboken: 2011: 257
  • 3 Chen W, Li R, Wu Y, Ding L.-S, Chen Y.-C. Synthesis 2006; 3058
    • 4a Karimi B, Akhavan PF. Chem. Commun. 2009; 3750
    • 4b Karimi B, Akhavan PF. Inorg. Chem. 2011; 50: 6063

      For selected examples of self-supported BINAP-Ru catalysts of this type, see:
    • 5a Fan Q.-H, Ren C.-Y, Yeung CH, Hu W.-H, Chan AS. C. J. Am. Chem. Soc. 1999; 121: 7407
    • 5b ter Halle R, Colasson B, Schulz E, Spagnol M, Lemaire M. Tetrahedron Lett. 2000; 41: 643

      For selected examples of self-supported salen–metal complexes of this type, see:
    • 6a Ready JM, Jacobsen EN. J. Am. Chem. Soc. 2001; 123: 2687
    • 6b Ready JM, Jacobsen EN. Angew. Chem. Int. Ed. 2002; 41: 1374
    • 6c White DE, Jacobsen EN. Tetrahedron: Asymmetry 2003; 14: 3633
    • 6d Leung AC. W, MacLachlan MJ. J. Mater. Chem. 2007; 17: 1923
    • 6e Leung AC. W, Hui JK.-H, Chong JH, MacLachlan MJ. Dalton Trans. 2009; 5199
    • 6f Zulauf A, Mellah M, Schulz E. Chem. Commun. 2009; 6574
  • 7 Suzuki Y, Ono RJ, Ueda M, Bielawski CW. Eur. Polym. J. 2013; 49: 4276
  • 8 Powell AB, Suzuki Y, Ueda M, Bielawski CW, Cowley AH. J. Am. Chem. Soc. 2011; 133: 5218
    • 9a Itsuno S, Paul DK, Salam MA, Haraguchi N. J. Am. Chem. Soc. 2010; 132: 2864
    • 9b Itsuno S, Paul DK, Ishimoto M, Haraguchi N. Chem. Lett. 2010; 39: 86
    • 9c Parvez MM, Haraguchi N, Itsuno S. Org. Biomol. Chem. 2012; 10: 2870
    • 9d Haraguchi N, Ahamed P, Parvez MM, Itsuno S. Molecules 2012; 17: 7569
    • 9e Ahamed P, Haque MA, Ishimoto M, Parvez MM, Haraguchi N, Itsuno S. Tetrahedron 2013; 69: 3978
  • 10 A similar strategy has been used more recently by Itsuno and co-workers to prepare self-supported imidazolidinone organocatalysts, see: Haraguchi N, Kiyono H, Takemura Y, Itsuno S. Chem. Commun. 2012; 48: 4011
    • 12a Wang J In Handbook of Engineering and Specialty Thermoplastics: Polyethers and Polyesters . Vol. 3. Thomas S, Visakh PM. John Wiley & Sons; Hoboken: 2011: 55
    • 12b Wang G In High Performance Polymers and Engineering Plastics . Mittal V. John Wiley & Sons; Hoboken: 2011: 341
    • 13a Liu G, Shang Y, Xie X, Wang S, Wang J, Wang Y, Mao Z. Int. J. Hydrogen Energy 2012; 37: 848
    • 13b Hu Q, Shang Y, Wang Y, Xu M, Wang S, Xie X, Liu Y, Zhang H, Wang J, Mao Z. Int. J. Hydrogen Energy 2012; 37: 12659
    • 13c Qian W, Shang Y, Fang M, Wang S, Xie X, Wang J, Wang W, Du J, Wang Y, Mao Z. Int. J. Hydrogen Energy 2012; 37: 12919
    • 13d Iulianelli A, Basile A. Int. J. Hydrogen Energy 2012; 37: 15241
    • 14a Metal-Catalyzed Cross-Coupling Reactions . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004. 2nd ed.
    • 14b Transitional Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Beller M, Bolm C. Wiley-VCH; Weinheim: 2004. 2nd ed.
    • 14c Bates R. Organic Synthesis Using Transition Metals . John Wiley & Sons; Chichester: 2012. 2nd ed.
    • 14d Molnár Á. Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments. Wiley-VCH; Weinheim: 2013
    • 14e Chinchilla R, Nájera C. Chem. Rev. 2014; 114: 1783
    • 15a Alacid E, Alonso DA, Botella L, Nájera C, Pacheco MC. Chem. Rec. 2006; 117
    • 15b Palladacycles: Synthesis, Characterization and Applications. Dupont J, Pfeffer M. Wiley-VCH; Weinheim: 2008
    • 15c Alonso DA, Nájera C. Chem. Soc. Rev. 2010; 39: 2891
    • 16a Baleizão C, Corma A, García H, Leyva A. Chem. Commun. 2003; 606
    • 16b Baleizão C, Corma A, García H, Leyva A. J. Org. Chem. 2004; 69: 439
    • 16c Corma A, García H, Leyva A. Tetrahedron 2004; 60: 8553
    • 16d Corma A, García H, Leyva A. J. Catal. 2006; 240: 87
    • 16e Alacid E, Nájera C. Synlett 2006; 2959
    • 16f Alacid E, Nájera C. Adv. Synth. Catal. 2007; 349: 2572
    • 16g Alacid E, Nájera C. Eur. J. Org. Chem. 2008; 3102
    • 16h Alacid E, Nájera C. J. Organomet. Chem. 2009; 694: 1658
    • 16i Bakherad M, Keivanloo A, Bahramian B, Jajarmi S. Appl. Catal., A 2010; 390: 135
    • 17a Susanto W, Chu C.-Y, Ang WJ, Chou T.-C, Lo L.-C, Lam Y. Green Chem. 2012; 14: 77
    • 17b Susanto W, Chu C.-Y, Ang WJ, Chou T.-C, Lo L.-C, Lam Y. J. Org. Chem. 2012; 77: 2729
  • 18 Liu Q.-P, Chen Y.-C, Wu Y, Zhu J, Deng J.-G. Synlett 2006; 1503
  • 19 See the Supporting Information for details.
  • 20 Suzuki–Miyaura Reaction; General Procedure: Aryl halide 19 or 22 (1.0 mmol), phenylboronic acid (20; 1.2 mmol, 0.146 g), 18 (0.015 mmol, 0.002 g), Cs2CO3 (1.5 mmol, 0.489 g), DMF (2.5 mL), and H2O (2.5 mL) were placed in a 25 mL round-bottomed flask equipped with a magnetic stirrer. The flask was immersed in an oil bath regulated at 80 or 100 °C for the reaction time indicated in Table 1 or Table 2. After the reaction mixture was cooled to r.t., Et2O (8 mL) and H2O (8 mL) were added to the flask. The resulting mixture was vigorously stirred for 5 min, and then filtered. The solid 18 collected on the filter was washed with H2O (10 mL) and Et2O (10 mL) and then dried. The filtrate was transferred to a separation funnel and the organic phase was separated and washed with H2O (5 × 25 mL) and brine (10 mL), and then dried over MgSO4. The solvent was removed under reduced pressure and the resulting residue was analyzed by 1H and 13C NMR spectroscopy. When aryl chlorides were used as substrates, the crude products were purified by silica gel column chromatography.