Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(6): 795-798
DOI: 10.1055/s-0033-1340847
DOI: 10.1055/s-0033-1340847
letter
Phosphoric Acid Bridged Cobalt Bis(dicarbollide) Ion as a Highly Efficient Catalyst for the Organocatalytic Hydrogenation of Ketimines
Further Information
Publication History
Received: 31 December 2013
Accepted after revision: 28 January 2014
Publication Date:
05 March 2014 (online)
Abstract
The high-yield reduction of aromatic ketimines into amines by using a novel catalyst based on a metallacarborane structure, 8,8′-μ-phosphate[(1,2-dicarba-closo-undecaborane)-3,3′-cobalt(-1)(1′,2′-dicarba-closo-undecaborane)] acid, is described.
-
References and Notes
- 1 Henkel T, Brunne RM, Müller H, Reichel F. Angew. Chem. Int. Ed. 1999; 38: 643
- 2a Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
- 2b Fleury-Brégeot N, de la Fuente V, Castillón S, Claver C. ChemCatChem 2010; 2: 1346
- 2c Xie J.-H, Zhu S.-F, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
- 2d Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
- 3 For a review on metal-catalyzed hydrosilylation, see: Riant O, Mostefaï N, Courmarcel J. Synthesis 2004; 2943
- 4 Ouellet SG, Walji AM, MacMillan DW. C. Acc. Chem. Res. 2007; 40: 1327
- 5a Rueping M, Azap C, Sugiono E, Theissmann T. Synlett 2005; 2367
- 5b Menche D, Hassfeld J, Li J, Menche G, Ritter A, Rudolph S. Org. Lett. 2006; 8: 741
- 5c Menche D, Arikan F. Synlett 2006; 841
- 5d Zhang Z, Schreiner PR. Synlett 2007; 1455
- 6 Bachu P, Zhu C, Akiyama T. Tetrahedron Lett. 2013; 54: 3977
- 7a Ref. 4.
- 7b You S.-L. Chem. Asian J. 2007; 2: 820
- 7c Connon SJ. Org. Biomol. Chem. 2007; 5: 3407
- 7d Rueping M, Sugiono E, Schoepke FR. Synlett 2010; 852
-
7e Rueping M, Dufour J, Schoepke FR. Green Chem. 2011; 13: 1084
- 7f Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
- 8a Zhu C, Akiyama T. Org. Lett. 2009; 11: 4180
- 8b Zhu C, Akiyama T. Adv. Synth. Catal. 2010; 352: 1846
- 8c Zhu C, Akiyama T. Synlett 2011; 1251
- 8d Henseler A, Kato M, Mori K, Akiyama T. Angew. Chem. Int. Ed. 2011; 50: 8180
- 8e Saito K, Akiyama T. Chem. Commun. 2012; 48: 4573
- 8f Sakamoto T, Mori K, Akiyama T. Org. Lett. 2012; 14: 3312
- 8g For a review, see: Zhu C, Falck JR. ChemCatChem 2011; 3: 1850
- 9 Grimes RN. Coord. Chem. Rev. 2000; 200: 773
- 10 Farras P, Juarez-Perez EJ, Lepsik M, Luque R, Nunez R, Teixidore F. Chem. Soc. Rev. 2012; 41: 3445
- 11 Grimes RS. Carboranes . Elsevier; Amsterdam: 2011
- 12 Colacot TJ, Hosmane NS. Z. Anorg. Allg. Chem. 2005; 631: 2659
- 13 Bauer S, Hey-Hawkins E In Boron Sciences. New Technologies and Applications . Hosmane NS. CRC Press; Boca Raton, FL: 2012: 529
- 14 Plesek J, Gruner B, Cisarova I, Baca J, Selucky P, Rais J. J. Organomet. Chem. 2002; 657: 59
- 15 Lazarev LN, Lyubtsev RL, Galkin BY, Romanovskii VN, Shishkin DN, Kyrs M, Selucky P, Rais J, Hermanek S, Plesek J. Patent USSR, 1,031,088 , 1981
- 16 Leśnikowski ZJ, Paradowska E, Olejniczak AB, Studzińska M, Seekamp P, Schüßler U, Gabel D, Schinazi RF, Plešek J. Bioorg. Med. Chem. 2005; 13: 4168
- 17 Sibrian-Vazquez M, Vicente MG. H In Boron Sciences. New Technologies and Applications . Hosmane NS. CRC Press; Boca Raton, FL: 2011: 209
- 18 Olejniczak AB, Corsini M, Fedi S, Zanello P, Leśnikowski ZJ. Electrochem. Commun. 2007; 9: 1007
- 19 Olejniczak AB, Grűner B, Šicha V, Broniarek S, Lesnikowski ZJ. Electroanalysis 2009; 21: 501
- 20 Hall IH, Warren AE, Lee CC, Wasczcak MD, Sneddon LG. Anticancer Res. 1998; 18: 951
- 21 Hall IH, Lackey CB, Kistler TD, Durham RW, Russell JM, Grimes RN. Anticancer Res. 2000; 20: 2345
- 22 Kozísek M, Cígler P, Lepsík M, Fanfrlík J, Rezácová P, Brynda J, Pokorná J, Plesek J, Grüner B, Saskova KG, Vaclavikova J, Kral V, Konvalinka J. J. Med. Chem. 2008; 51: 4839
- 23 Rezacova P, Pokorna J, Brynda J, Kozisek M, Cigler P, Lepsik M, Fanfrlik J, Rezac J, Saskova KG, Sieglova I, Plesek J, Sicha V, Gruner B, Oberwinkler H, Sedlacek J, Krausslich HG, Hobza P, Kral V, Konvalinka J. J. Med. Chem. 2009; 52: 7132
- 24 Preparation of 4a–k; General Procedure: All the reaction flasks were dried by flame, and all reactions were carried out under N2. All the solvents were distilled under nitrogen and stored over 4 Å MS prior to use. Thin-layer chromatography was performed on Merck 60 F254 silica gel plates and visualization was accomplished by irradiation with UV light or by treatment with a solution of phosphomolybdic acid solution followed by heating. Ketimine 3a–k (13.0 mg, 0.05 mmol), 1(HNEt3 +)(H+) (1.1 mg, 0.0025 mmol), and Hantzsch ester (2; 0.07 mmol, 1.4 equiv) were mixed in benzene (1 mL) in a flame-dried test tube containing dried molecular sieves (5 Å, 50 mg) under a nitrogen atmosphere at 50 °C for 20 h (not optimized). The resulting mixture was filtered through Celite (washed with CH2Cl2) and then evaporated under reduced pressure. The residue was purified by preparative silica gel thin-layer chromatography (hexane–EtOAc, 5:1 v/v).
- 25 NMR characteristics of 4a–k: NMR spectra were recorded with a Unity Inova-400 instrument (Varian Ltd., 400 MHz for 1H, 100 MHz for 13C) using CDCl3 as solvent. Chemical shifts (δ) for 1H were referenced to tetramethylsilane (δ = 0.00 ppm) as an internal standard. Chemical shifts (δ) for 13C were referenced to the solvent signal (CDCl3; δ = 77.00 ppm). N-(4-Methoxyphenyl)-1-(4-chlorophenyl)ethylamine (4a): 27 Yield: 94%; pale-yellow oil.1H NMR (400 MHz, CDCl3): δ = 1.47 (d, J = 6.8 Hz, 3 H), 3.69 (s, 3 H), 4.37 (q, J = 6.8 Hz, 1 H), 6.42–6.46 (m, 2 H), 6.66–6.71 (m, 2 H), 7.24–7.32 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 25.1, 53.8, 55.7, 114.6, 114.7, 127.3, 128.7, 132.3, 141.1, 144.0, 152.1. N-(4-Methoxyphenyl)-1-phenylethylamine (4b): 27 Yield: 94%; pale-yellow oil. 1H NMR (400 MHz, CDCl3): δ = 1.50 (d, J = 6.8 Hz, 3 H), 3.69 (s, 3 H), 4.41 (q, J = 6.8 Hz, 1 H), 6.45–6.50 (m, 2 H), 6.66–6.71 (m, 2 H), 7.19–7.24 (m, 1 H), 7.29–7.38 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 25.0, 54.4, 55.7, 114.7, 114.7, 125.9, 126.8, 128.6, 141.3, 145.3, 152.0. N-(4-Methoxyphenyl)-1-(4-methylphenyl)ethylamine (4c): 27 Yield: 96%; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 1.47 (d, J = 6.8 Hz, 3 H), 2.32 (s, 3 H), 3.69 (s, 3 H), 4.37 (q, J = 6.8 Hz, 1 H), 6.45–6.50 (m, 2 H), 6.66–6.71 (m, 2 H), 7.11 (d, J = 8.0 Hz, 2 H), 7.24 (d, J = 8.0 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 21.0, 25.1, 53.9, 55.7, 114.5, 114.7, 125.8, 129.2, 136.3, 141.6, 142.4, 151.8. N-(4-Methoxyphenyl)-1-(4-methoxyphenyl)ethylamine (4d): 27 Yield: 75%; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 1.47 (d, J = 6.8 Hz, 3 H), 3.69 (s, 3 H), 3.78 (s, 3 H), 4.36 (q, J = 6.8 Hz, 1 H), 6.46–6.51 (m, 2 H), 6.67–6.71 (m, 2 H), 6.83–6.87 (m, 2 H), 7.25–7.29 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 25.0, 53.6, 55.2, 55.7, 113.9, 114.6, 114.7, 126.9, 137.4, 141.6, 151.8, 158.4. N-(4-Methoxyphenyl)-1-naphthaylethylamine (4e): 27 Yield: 88%; off-white sticky oil. 1H NMR (400 MHz, CDCl3): δ = 1.57 (d, J = 6.8 Hz, 3 H), 3.67 (s, 3 H), 4.56 (q, J = 6.8 Hz, 1 H), 6.50–6.56 (m, 2 H), 6.64–6.70 (m, 2 H), 7.40–7.47 (m, 2 H), 7.48–7.52 (m, 1 H), 7.78–7.82 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 25.1, 54.5, 54.5, 55.7, 114.8, 124.3, 124.4, 125.5, 125.9, 127.6, 127.8, 128.4, 132.7, 133.6, 141.4, 142.9, 152.0. N-Phenyl-1-(4-chlorophenyl)ethylamine (4f): 28 Yield: 97%; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 1.46 (d, J = 6.7 Hz, 3 H), 4.38 (q, J = 2.2 Hz, 1 H), 6.45 (d, J = 7.6 Hz, 2 H), 6.63 (t, J = 7.4 Hz, 1 H), 7.06–7.12 (m, 2 H), 7.21–7.30 (m, 4 H), 7.48–7.52 (m, 1 H), 7.78–7.82 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 25.4, 53.2, 113.4, 117.3, 129.0, 129.3, 132.6, 144.1, 147.2. N-(Phenyl)-1-phenylethylamine (4g): 27 Yield: quant.; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 1.51 (d, J = 6.8 Hz, 3 H), 4.10 (br s, 1 H), 4.47 (q, J = 6.8 Hz, 1 H), 6.50 (d, J = 8.4 Hz, 2 H), 6.62–6.68 (m, 1 H), 7.06–7.12 (m, 2 H), 7.19–7.26 (m, 1 H), 7.28–7.40 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 24.9, 53.5, 113.3, 117.2, 125.8, 126.8, 128.6, 129.1, 145.1, 147.2. N-Benzyl-4-methoxybenzenamine (4h): 29a,b Yield: 98%; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 3.74 (s, 3 H), 4.28 (s, 2 H), 6.60 (d, J = 7.6 Hz, 2 H), 6.77 (d, J = 7.6 Hz, 2 H), 7.24–7.38 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 49.5, 56.0, 114.3, 115.1, 127.4, 127.8, 128.8, 139.9, 142.6, 152.4. N-Benzyl-4-chlorobenzenamine (4i): 30 Yield: 95%; white solid. 1H NMR (400 MHz, CDCl3): δ = 4.14 (br s, 1 H), 4.31 (s, 2 H), 6.54–6.59 (m, 2 H), 7.10–7.15 (m, 2 H), 7.27–7.34 (m, 1 H), 7.34–7.39 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 48.3, 113.9, 122.1, 127.3, 127.4, 128.7, 129.0, 138.8, 146.5. N-(3,4,5-Trimethoxyphenyl)-1-phenylethylamine (4j): 31 Yield: 99%; pale-yellow oil. 1H NMR (400 MHz, CDCl3): δ = 1.51 (d, J = 6.8 Hz, 3 H), 3.67 (s, 6 H), 3.71 (s, 3 H), 4.03 (br s, 1 H), 4.42 (q, J = 6.8 Hz, 1 H), 5.75 (s, 2 H), 7.19–7.25 (m, 1 H), 7.29–7.35 (m, 2 H), 7.35–7.39 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 24.9, 54.1, 55.6, 60.9, 90.8, 125.7, 126.9, 128.6, 129.7, 144.0, 145.3, 153.6. Methyl (4-Chlorophenylamino)phenylacetate (4k): 32 Yield: 78%; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 3.73 (s, 3 H), 5.03 (s, 1 H), 6.47 (d, J = 8.8 Hz, 2 H), 7.06 (d, J = 8.8 Hz, 2 H), 7.31–7.37 (m, 3 H), 7.45–7.47 (m, 2 H).13C NMR (100 MHz, CDCl3): δ = 52.9, 60.7, 114.5, 122.8, 127.2, 128.5, 128.9, 129.1, 137.7, 144.3, 172.0.
- 26a Simón L, Goodman JM. J. Am. Chem. Soc. 2008; 130: 8741
- 26b Shibata Y, Yamanaka M. J. Org. Chem. 2013; 78: 3731
- 27 Storer RI, Carrera DE, Ni Y, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 84
- 28 Vargas S, Rubio M, Suárez A, del Río D, Álvarez E, Pizzano A. Organometallics 2006; 25: 961
- 29a Menche D, Arikan F. Synlett 2006; 841
- 29b Martinez R, Ramon DJ, Yus M. Org. Biomol. Chem. 2009; 7: 2176
- 30 Sreedhar B, Reddy PS, Devi DK. J. Org. Chem. 2009; 74: 8806
- 31 Mršić N, Minnaard AJ, Feringa BL, de Vries JG. J. Am. Chem. Soc. 2009; 131: 8358
- 32 Wang Y, Zhu Y, Chen Z, Mi A, Hu W, Doyle MP. Org. Lett. 2003; 5: 3923
For recent reviews, see:
For reviews, see: