Synlett 2013; 24(20): 2768-2772
DOI: 10.1055/s-0033-1339922
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot DBU-Promoted Synthesis of Hydroacridinones and Spirohexahydropyrimidines

Constantinos G. Neochoritis
,
Nicolaos Eleftheriadis
,
Arianna Tsiantou
,
Julia Stephanidou-Stephanatou*
,
Constantinos A. Tsoleridis*
Further Information

Publication History

Received: 21 August 2013

Accepted after revision: 09 September 2013

Publication Date:
05 November 2013 (online)


Abstract

The potential hydroacridinone synthesis using simple and inexpensive starting materials, namely 1,3-dicarbonyl compounds, anilines, formaldehyde and DBU as a stoichiometric base was explored. As a result, from the reaction of 1,3-cyclohexanedione and dimedone tetrahydroacridinones were the main reaction products along with small yields of their oxidation products, the dihydroacridinones, whereas in the case of 2-acetylcyclohexanone spirohexahydropyrimidines were isolated in very good yields. Plausible mechanistic schemes for the formation of all products are proposed.

 
  • References and Notes

  • 1 New address: C. G. Neochoritis, Department of Drug Design, University of Groningen, Groningen, The Netherlands.
  • 2 New address: N. Eleftheriadis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
  • 3 Wöhler F. Ann. Phys. Chem. 1828; 88: 253
    • 4a Summers WK, Majovski LV, Marsh GM, Tachiki K, Kling A. New Engl. J. Med. 1986; 315: 1241
    • 4b Contestabile A. Behav. Brain Res. 2011; 221: 334
    • 4c Grammas P. Therapy 2011; 8: 463
    • 4d O’Brien JT, Burns A. J. Psychopharm. 2011; 25: 997
    • 5a Mendelson G. Med. J. Aust. 1975; 2: 906
    • 5b Ha GT, Wong RK, Zhang Y. Chem. Biodivers. 2011; 8: 1189
    • 5c Summers WK, Kaufman KR, Altman FJr, Fischer JM. Clin. Toxicol. 1980; 16: 269
    • 5d Lemstra AW, Eikelenboom P, Van Gool WA. Gerontology 2003; 49: 55
    • 6a Shutske GM, Pierrat FA, Kapples KJ, Cornfeldt ML, Szewczak MR, Huger FP, Bores GM, Haroutunian V, Davis KL. J. Med. Chem. 1989; 32: 1805
    • 6b Carvalho FA, Lopes de Almeida JP, Freitas-Santos T, Saldanha C. J. Membrane Biol. 2009; 228: 89
    • 7a Cain BF, Atwell GJ, Denny WA. J. Med. Chem. 1976; 19: 772
    • 7b Kimura M, Okabayashi I, Kato A. Chem. Pharm. Bull. 1989; 37: 697
    • 8a Kirk SR, Luedtke NW, Tor Y. J. Am. Chem. Soc. 2000; 122: 980
    • 8b Tonelli M, Vettoretti G, Tasso B, Novelli F, Boido V, Sparatore F, Busonera B, Ouhtit A, Farci P, Blois S, Giliberti G, La Colla P. Antiviral Res. 2011; 91: 133
  • 9 Inman WD, O’Neill-Johnson M, Crews P. J. Am. Chem. Soc. 1990; 112: 1
    • 10a Giménez-Arnau E, Missailidis S, Stevens MF. G. Anti-Cancer Drug Des. 1998; 13: 431
    • 10b Oliver RT. D. Curr. Opin. Oncol. 2001; 13: 191
    • 10c Martins ET, Baruah H, Kramarczyk J, Saluta G, Day CS, Kucera GL, Bierbach U. J. Med. Chem. 2001; 44: 4492
  • 11 Albert A. The Acridines . Edward–Arnold Publishers LTD; London: 1966
  • 12 Valdés AF.-C. Open Med. Chem. J. 2011; 5: 11
    • 13a Shutske GM, Tomer JD. J. Heterocycl. Chem. 1993; 30: 23
    • 13b Boyd DR, Davies RJ, Hamilton L, McCullough JJ, Malone JF, Porter HP, Smith A, Carl JM, Sayer JM, Jerina DM. J. Org. Chem. 1994; 59: 984
    • 13c Martínez R, Espinosa-Pérez G, Brito-Arias M. J. Chem. Cryst. 1995; 25: 201
    • 13d Shen Q, Wang L, Yu J, Liu M, Qiu J, Fang L, Guo F, Tang J. Synthesis 2012; 44: 389
    • 13e Edmondson SD, Mastracchio A, Parmee ER. Org. Lett. 2000; 2: 1109
    • 13f Tominaga Y, Okuda H, Mazume H. J. Heterocycl. Chem. 1991; 28: 1245
    • 13g Sridharan V, Ribelles P, Ramos MT, Menéndez JC. J. Org. Chem. 2009; 74: 5715
  • 14 Kidwai M, Rastogi S. Heteroat. Chem. 2005; 16: 138
    • 15a Quiroga J, Mejía D, Insuasty B, Abonia R, Nogueras M, Sánchez A, Cobo J, Low JN. Tetrahedron 2001; 57: 6947
    • 15b Lipson VV, Desenko SM, Shirobokova MG, Borodina VV. Chem. Heterocycl. Comp. 2003; 39: 1213
  • 16 Tratrat C, Giorgi-Renault S, Husson H.-P. Org. Lett. 2002; 4: 3187
    • 17a Kadutskii AP, Kozlov NG. Russ. J. Org. Chem. 2006; 42: 1388
    • 17b Kadutskii AP, Kozlov NG, Bondaref SL. Russ. J. Org. Chem. 2006; 42: 1383
  • 18 Heravi MR. P, Aghamohammadi P. C. R. Chimie 2012; 448
    • 19a Kozlov NG, Kadutskii AP. Tetrahedron Lett. 2008; 49: 4560
    • 19b Kadutskii AP, Kozlov NG, Zhikharko YD. Russ. J. Org. Chem. 2011; 47: 412
    • 19c Quiroga J, Trilleras J, Pantoja D, Abonia R, Insuasty B, Nogueras M, Cobo J. Tetrahedron Lett. 2010; 51: 4717
    • 20a Mukhopadhyay C, Rana S, Butcher RJ. Tetrahedron Lett. 2011; 52: 4153
    • 20b Dandia A, Jain AK, Sharma S. Tetrahedron Lett. 2012; 53: 5270
    • 20c Atar AB, Jeong YT. Tetrahedron Lett. 2013; 54: 1302
  • 21 Li M, Chen C, He F, Gu Y. Adv. Synth. Catal. 2010; 352: 519

    • General Experimental Procedure for the DBU-Promoted Mannich Reaction: A mixture of 4-methylaniline (1.0 mmol), formaldehyde (9 equiv, 36% aq solution), DBU (1 equiv) and dimedone (1 equiv) in EtOH (20 mL) was refluxed for 10 min to dissolve all the reactants, and then the reaction mixture was stirred for 3 h at r.t. The solvent was distilled off and the resulting residue was subjected to column chromatography on silica gel using petroleum ether–EtOAc (10:1) as eluent, to give the product 3f along with a small amount of 4f. In an analogous manner, using 2-acetylcyclohexanone (2.0 mmol) product 10b was isolated.
    • 22a 3,3,7-Trimethyl-3,4,9,10-tetrahydroacridin-1(2H)-one (3f): white crystals; mp 230–232 °C; yield: 73%. 1H NMR (300 MHz, CDCl3): δ = 1.09 (s, 6 H, 2 × Me, 3-Me), 2.236 (s, 2 H, 4-H), 2.245 (s, 3 H, 7-Me), 2.27 (s, 2 H, 2-H), 3.67 (s, 2 H, 9-H), 5.87 (br s, 1 H, NH), 6.50 (d, J = 7.9 Hz, 1 H, 5-H), 6.85 (dd, J = 7.9, 1.7 Hz, 1 H, 6-H), 6.91 (d, J = 1.7 Hz, 1 H, 8-H). 13C NMR (300 MHz, CDCl3): δ = 20.7 (7-Me), 24.2 (C-9), 28.5 (2 × Me, 3-Me), 32.6 (C-3), 42.4 (C-4), 50.7 (C-2), 104.3 (C-9a), 114.6 (C-5), 122.8 (C-8a), 127.4 (C-6), 130.5 (C-8), 133.1 (C-7), 134.2 (C-10a), 151.3 (C-4a), 194.8 (C-1). LC–MS (ESI, 1.65 eV): m/z = 242 (100) [M + H]+. Anal. Calcd for C16H19NO (241.33): C, 79.63; H, 7.94; N, 5.80. Found: C, 79.78; H, 7.78; N, 5.96.
    • 22b 3,3,7-Trimethyl-3,4-dihydroacridin-1(2H)-one (4f): white crystals; mp 95–97 °C; yield: 73%. 1H NMR (300 MHz, CDCl3): δ = 1.15 (s, 6 H, 2 × Me, 3-Me), 2.54 (s, 3 H, 7-Me), 2.64 (s, 2 H, 2-H), 3.18 (s, 2 H, 4-H), 7.62 (dd, J = 8.6, 1.7 Hz, 1 H, 6-H), 7.68 (d, J = 1.7 Hz, 1 H, 8-H), 7.94 (d, J = 8.6 Hz, 1 H, 5-H), 8.73 (s, 1 H, 9-H). 13C NMR (75 MHz, CDCl3): δ = 21.5 (7-Me), 28.4 (2 × Me, 3-Me), 32.8 (C-3), 47.2 (C-4), 52.6 (C-2), 125.4 (C-9a), 126.9 (C-8a), 128.36 (C-8), 128.42 (C-5), 134.6 (C-6), 135.8 (C-9), 136.7 (C-7), 148.8 (C-10a), 160.0 (C-4a), 198.1 (C-1). LC–MS (ESI, 1.65 eV): m/z = 240 (100) [M + H]+. Anal. Calcd for C16H17NO (239.31): C, 80.30; H, 7.16; N, 5.85. Found: C, 80.60; H, 7.18; N, 6.05
  • 23 Wei H.-L, Yan Z.-Y, Niu Y.-N, Li G.-Q, Liang Y.-M. J. Org. Chem. 2007; 72: 8600
  • 24 Neochoritis CG, Stephanidou-Stephanatou J, Tsoleridis CA. Eur. J. Org. Chem. 2011; 5336
  • 25 Heldebrandt DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL. J. Org. Chem. 2005; 70: 5335
    • 26a Groszkowki S, Korzycka L, Bialasiewicz W. Pol. J. Pharmacol. Pharm. 1973; 25: 573 ; Chem. Abstr. 1974, 80, 116181r
    • 26b Drandarov K, Guggisberg A, Hesse M. Helv. Chim. Acta 1999; 82: 229