Synlett 2013; 24(19): 2596-2600
DOI: 10.1055/s-0033-1339898
letter
© Georg Thieme Verlag Stuttgart · New York

Study on the Influence of a Sustainable Medium for the Design of Multistep Processes: Three-Component Synthesis of 2-Nitroamines

Calogero G. Piscopo
a  Clean Synthetic Methodology Group, Dipartimento di Chimica dell’Università, Viale G. P. Usberti 17A, 43124 Parma, Italy   Fax: +39(0521)905472   eMail: raimondo.maggi@unipr.it
,
Giovanni Sartori
a  Clean Synthetic Methodology Group, Dipartimento di Chimica dell’Università, Viale G. P. Usberti 17A, 43124 Parma, Italy   Fax: +39(0521)905472   eMail: raimondo.maggi@unipr.it
,
José A. Mayoral
b  Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón and Instituto Universitario de Catálisis Homogénea, Facultad de Ciencias, Calle Pedro Cerbuna 12, Universidad de Zaragoza, 50009 Zaragoza, Spain
,
Daniela Lanari
c  Laboratory of Green Synthetic Organic Chemistry (CEMIN), Dipartimento di Chimica dell’Università, Via Elce di Sotto 8, 06123 Perugia, Italy
,
Luigi Vaccaro
c  Laboratory of Green Synthetic Organic Chemistry (CEMIN), Dipartimento di Chimica dell’Università, Via Elce di Sotto 8, 06123 Perugia, Italy
,
Raimondo Maggi*
a  Clean Synthetic Methodology Group, Dipartimento di Chimica dell’Università, Viale G. P. Usberti 17A, 43124 Parma, Italy   Fax: +39(0521)905472   eMail: raimondo.maggi@unipr.it
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 23. Juli 2013

Accepted after revision: 05. September 2013

Publikationsdatum:
16. Oktober 2013 (online)


Abstract

An environmentally benign method was developed for the three-component, one-pot synthesis of 2-nitroamines by heating a solution of an aldehyde, an aromatic amine, and a nitroalkane in 20% water–methanol at 60 °C for five hours in the absence of a catalyst.

 
  • References

    • 1a Ugi I. Pure Appl. Chem. 2001; 73: 187
    • 1b Ugi I, Heck S. Comb. Chem. High Throughput Screening 2001; 4: 1
    • 1c Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
  • 2 von Wangelin AJ, Neumann H, Gördes D, Klaus S, Strübing D, Beller M. Chem. Eur. J. 2003; 9: 4286
    • 3a Henderson RK, Jimènez-González C, Constable DJ. C, Alston SR, Inglis GG. A, Fisher G, Sherwood J, Binksa SP, Curzons AD. Green Chem. 2011; 13: 854
    • 3b Strauss CR. Aust. J. Chem. 1999; 52: 83
    • 4a Bigi F, Chesini L, Maggi R, Sartori G. J. Org. Chem. 1999; 64: 1033
    • 4b Sartori G, Bigi F, Maggi R, Mazzacani A, Oppici G. Eur. J. Org. Chem. 2001; 2513
    • 4c Maggi R, Bigi F, Carloni S, Mazzacani A, Sartori G. Green Chem. 2001; 3: 173
    • 4d Soldi L, Ferstl W, Loebbecke S, Maggi R, Malmassari C, Sartori G, Yadab S. J. Catal. 2008; 258: 289
  • 5 Ballini R, Barboni L, Fringuelli F, Palmieri A, Pizzo F, Vaccaro L. Green Chem. 2007; 9: 823
    • 6a Baer HH, Urbas L In The Chemistry of the Nitro and Nitroso Groups . Patai S. Interscience; New York: 1970. Part 2 117
    • 6b Nishiwaki N, Knudsen KR, Gothelf KV, Jørgensen KA. Angew. Chem. Int. Ed. 2001; 40: 2992
    • 6c Qian C, Gao F, Chen R. Tetrahedron Lett. 2001; 42: 4673
    • 6d Singh A, Yoder RA, Shen B, Johnston JN. J. Am. Chem. Soc. 2007; 129: 3466
    • 6e Noble A, Anderson JC. Chem. Rev. 2013; 113: 2887
    • 7a Stacy GW, Morath RJ. J. Am. Chem. Soc. 1952; 74: 3885
    • 7b Adams H, Anderson JC, Peace S, Pennell AM. K. J. Org. Chem. 1998; 63: 9932
  • 8 Anderson JC, Peace S, Pih S. Synlett 2000; 850
  • 9 Kundu D, Debnath RK, Majee A, Hajra A. Tetrahedron Lett. 2009; 50: 6998
  • 10 Marqués-López E, Merino P, Tejero T, Herrera RP. Eur. J. Org. Chem. 2009; 2401
  • 11 Tanaka K, Shiraishi R. Green Chem. 2000; 2: 272
  • 12 Manabe K, Iimura S, Sun X.-M, Kobayashi S. J. Am. Chem. Soc. 2002; 124: 11971
    • 13a Klijn JE, Engberts JB. F. N. Nature 2005; 435: 746
    • 13b Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
    • 14a Grieco PA, Yoshida K, Garner P. J. Org. Chem. 1983; 48: 3137
    • 14b Breslow R, Maitra U. Tetrahedron Lett. 1984; 25: 1239
    • 15a Li C.-J. Chem. Rev. 1999; 93: 2023
    • 15b Li C.-J, Chen L. Chem. Soc. Rev. 2006; 35: 68
    • 15c Lubineau A, Augé J, Queneau Y. Synthesis 1994; 741
    • 15d Bonollo S, Lanari D, Vaccaro L. Eur. J. Org. Chem. 2011; 2587
  • 16 Lindström UM, Andersson F. Angew. Chem. Int. Ed. 2006; 45: 548 ; and references cited therein
  • 17 Jung Y, Marcus RA. J. Am. Chem. Soc. 2007; 129: 5492
  • 18 Breslow R. Acc. Chem. Res. 1991; 24: 159
  • 19 A method for synthesizing imines from amines and aldehydes in aqueous suspension has been previously reported; see ref. 11. However, this solvent-free approach gave a poor yield (~20%) of the model product 5aaa when applied to the present three-component reaction described in Scheme 1.
    • 20a Dickerson TJ, Janda KD. J. Am. Chem. Soc. 2002; 124: 3220
    • 20b Hayashi Y. Angew. Chem. Int. Ed. 2006; 45: 8103
    • 20c Brogan AP, Dickerson TJ, Janda KD. Angew. Chem. Int. Ed. 2006; 45: 8100
    • 20d Huang J, Zhang X, Armstrong DW. Angew. Chem. Int. Ed. 2007; 46: 9073
  • 21 PhCHO (1a; 1 mmol) and PhNH2 (2a; 1 mmol) were stirred in H2O (5 mL) or 1 M aq LiCl (5 mL) at 60 °C for 10 min to give imine 3aa in 75 and 78% yield, respectively. In a second experiment, PhCHO (1a; 1 mmol), PhNH2 (2a; 1 mmol), and MeNO2 (4a; 10 mmol) were stirred in H2O (5 mL) or 1 M aq LiCl (5 mL) at 60 °C for 30 min to give nitro amine 5aaa in 37 and 39% yield, respectively.

    • All 2-nitroamines 5 synthesized are known compounds, see:
    • 23a Ziyaei-Halimehjani A, Saidi MR. Tetrahedron Lett. 2008; 49: 1244
    • 23b Petersen S, Mitrowsky A. GB 771566, 1957
    • 23c Mahasneh AS. Abhath Al-Yarmouk, Basic Sci. Eng. 2004; 13: 79
    • 23d Shoemaker GL, Keown RW. Trans. Ky. Acad. Sci. 1955; 16: 85
    • 23e Ai X, Wang X, Liu J.-m, Ge Z.-m, Cheng Z.-m, Li R.-t. Tetrahedron 2010; 66: 5373
    • 23f Leonard NJ, Leubner GW, Burk EH. Jr. J. Org. Chem. 1950; 15: 979