Synlett 2013; 24(15): 1963-1967
DOI: 10.1055/s-0033-1339335
letter
© Georg Thieme Verlag Stuttgart · New York

Cross-Dehydrogenative Coupling of Dithiolanes with Ketones and Indoles under Metal-Free Conditions

Kamal Nain Singh*
Department of Chemistry, Panjab University, Chandigarh 160014, India   Email: kns@pu.ac.in
,
Paramjit Singh
Department of Chemistry, Panjab University, Chandigarh 160014, India   Email: kns@pu.ac.in
,
Pushpinder Singh
Department of Chemistry, Panjab University, Chandigarh 160014, India   Email: kns@pu.ac.in
,
Yogita Maheshwary
Department of Chemistry, Panjab University, Chandigarh 160014, India   Email: kns@pu.ac.in
,
Satinder V. Kessar
Department of Chemistry, Panjab University, Chandigarh 160014, India   Email: kns@pu.ac.in
,
Aanchal Batra
Department of Chemistry, Panjab University, Chandigarh 160014, India   Email: kns@pu.ac.in
› Author Affiliations
Further Information

Publication History

Received: 18 April 2013

Accepted after revision: 10 June 2013

Publication Date:
07 August 2013 (online)


Abstract

A metal-free cross-dehydrogenative coupling of dithiolanes with ketones and indoles has been developed using DDQ as an oxidant. It provides an economical protocol for the synthesis of β-keto dithiolanes and 3-(1,3-dithiolan-2-yl) indoles.

Supporting Information

 
  • References and Notes

    • 1a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 1b Ager DJ. Chem. Soc. Rev. 1982; 11: 493
    • 1c Block E. Reactions of Organosulfur Compounds . Academic Press; New York: 1978
    • 1d Mangini A. Sulfur Rep. 1987; 7: 313
    • 1e Murru S, Patel BK, Bras JL, Muzart J. J. Org. Chem. 2009; 74: 2217
    • 1f Berger DM, Dutia M, Powell D, Floyd MB, Torres N, Mallon R, Wojciechowicz D, Kim S, Feldberg L, Collins K, Chaudhary I. Bioorg. Med. Chem. 2008; 16: 9202
    • 2a Kakinuma T, Oriyama T. Tetrahedron Lett. 2010; 51: 290
    • 2b Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis . 3rd ed. Wiley; New York: 1999
    • 2c Schneider C. Angew. Chem. Int. Ed. 1998; 37: 1375
    • 2d Kocienski PJ. Protecting Groups 1994
    • 2e Gröbel B.-T, Seebach D. Synthesis 1977; 357
    • 2f Guanti G, Banfi L, Brusco S, Riva R. Tetrahedron Lett. 1993; 34: 8549
    • 2g Habibi MH, Tangestaninejad S, Montazerozohori M, Baltork IM. Molecules 2003; 8: 663
    • 2h Corey EJ, Seebach D. Angew. Chem., Int. Ed. Engl. 1965; 4: 1075
    • 3a Paterson I, Price LG. Tetrahedron Lett. 1981; 22: 2829
    • 3b Hatanaka K, Tanimoto S, Sugimoto T, Okano M. Tetrahedron Lett. 1981; 22: 3243
    • 3c Stossel D, Chan TH. J. Org. Chem. 1988; 53: 4901
    • 4a Zhou QF, Chu XP, Zhao S, Lu T, Tang WF. Chin. Chem. Lett. 2012; 23: 639
    • 4b Xu C, Bartley JK, Enache DI, Knight DW, Lunn M, Lok M, Hutchings GJ. Tetrahedron Lett. 2008; 49: 2454
    • 4c Ranu BC, Banerjee S, Jana R. Tetrahedron 2007; 63: 776
    • 4d Sneddon HF, van den Heuvel A, Hirsch AK. H, Booth RA, Shaw DM, Gaunt MJ, Ley SV. J. Org. Chem. 2006; 71: 2715
    • 4e Kuroda H, Tomita I, Endo T. Synth. Commun. 1996; 26: 1539
    • 5a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 5b Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633
    • 5c Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
    • 5d Dyker G. Handbook of C–H Transformation . Wiley-VCH; Weinheim: 2005

      For recent reviews on CDC reactions, see:
    • 6a Li B.-J, Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
    • 6b Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 6c Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 6d Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 6e Murahashi S.-I, Zhang D. Chem. Soc. Rev. 2008; 37: 1490
    • 6f Li Z, Bohle DS, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
    • 6g Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
    • 8a Ghobrial M, Harhammer K, Mihovilovic MD, Schnürch M. Chem. Commun. 2010; 46: 8836
    • 8b Liu P, Zhou C.-Y, Xiang S, Che C.-M. Chem. Commun. 2010; 46: 2739
    • 8c Zeng T, Song G, Moores A, Li C.-J. Synlett 2010; 2002
    • 8d Han W, Ofial AR. Chem. Commun. 2009; 6023
    • 8e Rao Volla CM, Vogel P. Org. Lett. 2009; 11: 1701
    • 8f Chiavarino B, Cipollini R, Crestoni ME, Fornarini S, Lanucara F, Lapi A. J. Am. Chem. Soc. 2008; 130: 3208

      For recent metal-free coupling reactions, see:
    • 9a Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR. Org. Lett. 2013; 15: 1092
    • 9b Schweitzer-Chaput B, Klussmann M. Eur. J. Org. Chem. 2013; 666
    • 9c Zhu Y.-P, Liu M.-C, Jia F.-C, Yuan J.-J, Gao Q.-H, Lian M, Wu A.-X. Org. Lett. 2012; 14: 3392
    • 9d Kumar RA, Saidulu G, Prasad KR, Kumar GS, Sridhar B, Reddy KR. Adv. Synth. Catal. 2012; 354: 2985
    • 9e Wang Z, Mo H, Cheng D, Bao W. Org. Biomol. Chem. 2012; 10: 4249
    • 10a Rohlmann R, Mancheño OG. Synlett 2013; 24: 6
    • 10b Alagiri K, Devadig P, Prabhu KR. Chem. Eur. J. 2012; 18: 5160
    • 10c Su W, Yu J, Li Z, Jiang Z. J. Org. Chem. 2011; 76: 9144
    • 10d Tsang AS.-K, Todd MH. Tetrahedron Lett. 2009; 50: 1199
    • 10e Tsang AS. K, Jensen P, Hook JM, Hashmi AS. K, Todd MH. Pure Appl. Chem. 2011; 83: 655
    • 10f Ying B.-P, Trogden BG, Kohlman DT, Liang SX, Xu Y.-C. Org. Lett. 2004; 6: 1523
    • 10g Cheng D, Bao W. Adv. Synth. Catal. 2008; 350: 1263
    • 10h Sundberg RJ, Theret M.-H, Wright L. Org. Prep. Proced. Int. 1994; 26: 386
    • 11a Fu L, Yao C.-J, Chang N.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Org. Biomol. Chem. 2012; 10: 506
    • 11b Li Z.-P, Yu R, Li HJ. Angew. Chem. Int. Ed. 2008; 47: 7497
    • 11c Li Z.-P, Li H.-J, Guo X.-G, Cao L, Yu R, Li H.-R, Pan S.-G. Org. Lett. 2008; 10: 803
  • 12 Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
  • 13 Jiangsheng L, Feifei C, Zhiwei L, Yuan X, Chao C, Weadong L, Zhong C. Chin. J. Chem. 2012; 30: 1699
  • 14 Singh KN, Singh P, Kaur A, Singh P. Synlett 2012; 23: 760
    • 15a Typical Procedure for Coupling of 9 and 2 To a 10 mL two-necked round-bottom flask charged with acetophenone 2 (8 equiv) and DDQ (1.2 equiv) was added dithiolane 9 (1 equiv) under nitrogen atmosphere. The reaction mixture was heated at 100 °C immediately and stirred at this temperature for 3 h. The resultant crude material was directly purified by flash chromatography on silica gel (EtOAc–hexane, 3:97) to afford the pure product 10. Data for Representative Examples 1-Phenyl-2-(2-phenyl-1,3-dithiolan-2-yl)ethanone (10a) 2a,4a Yield 0.11 g (55%); white solid; mp 129–131 °C (EtOAc–hexane, 5:95). IR: ν = 3064, 2962, 2921, 2855, 1681, 1659, 1603, 1595, 1529, 1446, 1340, 1242, 1207 cm–1. 1H NMR [300 MHz, CDCl3–CCl4 (1:1)]: δ = 7.81 (d, J = 1.5 Hz, 2 H), 7.67 (d, J = 1.5 Hz, 2 H), 7.43–7.41 (m, 1 H), 7.35–7.30 (m, 2 H), 7.19–7.14 (m, 2 H), 7.08–7.06 (m, 1 H), 4.17 (s, 2 H), 3.29–3.20 (m, 4 H). 13C NMR [75 MHz, CDCl3–CCl4 (1:1)]: δ = 195.0, 144.6, 136.7, 133.1, 128.5, 128.1, 127.9, 127.1, 126.9, 69.0, 54.2, 39.4. MS (ES+): m/z = 323.4 [M + Na]+. 2-[2-(4-Methoxyphenyl)-1,3-dithiolan-2-yl]-1-p-tolyl-ethanone (10i) Yield 0.100g (62%); white solid, mp 110–113 °C (EtOAc–hexane = 5:95). IR: ν = 3016, 2835, 1682, 1605, 1576, 1505, 1507, 1463, 1414, 1338, 1291, 1249, 1215 cm–1. 1H NMR [300 MHz, CDCl3–CCl4 (1:1)]: δ = 7.71 (d, J = 8.0 Hz, 2 H), 7.57 (d, J = 8.8 Hz, 2 H), 7.12 (d, J = 8.0 Hz, 2 H), 6.67 (d, J = 8.8 Hz, 2 H), 4.10 (s, 2 H), 3.67 (s, 3 H), 3.24–3.21 (m, 4 H), 2.32 (s, 3 H). 13C NMR [75 MHz, CDCl3–CCl4 (1:1)]: δ = 194.7, 158.4, 143.6, 136.7, 134.4, 129.2, 128.4, 128.3, 113.1, 68.9, 55.0, 53.9, 39.3, 21.7. HRMS (ES+): m/z calcd for C19H20S2O2Na [M + Na]+: 367.0796; found: 367.0780. 2-[2-(4-Chlorophenyl)-1,3-dithiolan-2-yl]-1-phenyl-ethanone (10j) Yield 0.086 g (56%); viscous oil. IR: ν = 3018, 2924, 2855, 1687, 1596, 1488, 1448, 1397, 1342, 1260, 1213 cm–1. 1H NMR [300 MHz, CDCl3–CCl4 (1:1)]: δ = 7.81 (t, J = 7.0 Hz, 2 H), 7.64–7.59 (m, 2 H), 7.48 (t, J = 7.0 Hz, 1 H), 7.36–7.31 (m, 2 H), 7.18–7.12 (m, 2 H), 4.16 (s, 2 H), 3.31–3.16 (m, 4 H). 13C NMR [75 MHz, CDCl3–CCl4 (1:1)]: δ = 195.0, 143.3, 136.4, 133.3, 132.9, 128.6, 128.0, 127.9, 68.4, 54.1, 39.4. HRMS (ES+): m/z calcd for C17H15S2ClONa [M + Na]+: 357.0145; found: 357.0146. 2-[2-(4-Chlorophenyl)-1,3-dithiolan-2-yl]-1-p-tolyl-ethanone (10m) Yield 0.096 g (60%); viscous oil. IR: ν = 3016, 2922, 2859, 2055, 1682, 1606, 1571, 1488, 1404, 1337, 1216 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.72 (d, J = 8.1 Hz, 2 H), 7.64 (d, J = 8.7 Hz, 2 H), 7.18–7.12 (m, 4 H), 4.17 (s, 2 H), 3.32–3.18 (m, 4 H), 2.31 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 195.2, 144.3, 143.4, 133.8, 132.7, 129.2, 128.4, 128.1, 127.9, 68.2, 53.8, 39.3, 21.6. HRMS (ES+): m/z calcd for C18H17S2ClONa [M + Na]+: 371.0301; found: 371.0378.
    • 15b Typical Procedure for Coupling of 9 and 11 To a 10 mL two-necked round-bottom flask charged with indole 11 (2 equiv) and DDQ (1.2 equiv) was added dithiolane 9 (1 equiv) under nitrogen atmosphere. The reaction mixture was heated at 60 °C immediately and stirred at this temperature for 12 h. The resultant crude material was directly purified by flash chromatography on silica gel (EtOAc–hexane, 10:90) to afford the pure product 12. Data for Representative Examples 3-(2-Phenyl-1,3-dithiolan-2-yl)-1H-indole (12a) 17a Yield 0.070 g (35%); yellow reddish solid, mp 91–93 °C (EtOAc–hexane, 5:95). IR: ν = 3406, 3052, 2921, 1593, 1567, 1517, 1492, 1455, 1443, 1413, 1337, 1241, 1210 cm–1. 1H NMR [300 MHz, CDCl3–CCl4 (1:1)]: δ = 7.84 (br s, 1 H), 7.64 (d, J = 7.0 Hz, 2 H), 7.35 (d, J = 7.8 Hz, 1 H), 7.21–7.12 (m, 5 H), 7.06 (t, J = 7.0 Hz, 1 H), 6.91 (t, J = 7.2 Hz, 1 H) 3.45–3.30 (m, 4 H). 13C NMR (75 MHz, CDCl3–CCl4 = 1:1): δ = 143.4, 137.6, 128.2, 127.9, 127.3, 125.6, 124.8, 122.4, 121.9, 120.7, 119.6, 111.1, 71.1, 40.0. MS (ES+): m/z = 298.1 [M + H]+. 3-[2-(4-Methoxyphenyl)-1,3-dithiolan-2-yl]-1H-indole (12c) Yield 0.069 g (45%); orange solid, mp 125–130 °C (EtOAc–hexane, 5:95). IR: ν = 3334, 2962, 2923, 1708, 1599, 1504, 1419, 1303, 1244, 1213 cm–1. 1H NMR [300 MHz, CDCl3–CCl4 (1:1)]: δ = 7.78 (br s, 1 H), 7.52 (d, J = 9.0 Hz, 2 H), 7.35 (d, J = 7.4 Hz, 1 H), 7.19–7.14 (m, 2 H), 7.05–7.00 (m, 1 H), 6.91–6.85 (m, 1 H), 6.68 (d, J = 8.7 Hz, 2 H), 3.70 (s, 3 H), 3.41–3.30 (m, 4 H). 13C NMR [75 MHz, CDCl3–CCl4 (1:1)]: δ = 137.7, 129.6, 124.8, 122.4, 122.3, 119.6, 113.2, 111.0, 71.1, 55.0, 39.9. HRMS (ES+): m/z calcd for C18H18S2NO [M + H]+: 328.0824; found: 328.0873. 3-[2-(4-Chlorophenyl)-1,3-dithiolan-2-yl]-1H-indole (12e) Yield 0.053g (35%); yellow oil. IR: ν = 3407, 2923, 1630, 1589, 1540, 1485, 1445, 1413, 1393, 1331, 1241, 788 cm–1. 1H NMR [300 MHz, CDCl3–CCl4 (1:1)]: δ = 7.80 (br s, 1 H), 7.56 (d, J = 8.7 Hz, 2 H), 7.32 (d, J = 8.1 Hz, 1 H), 7.19–7.11 (m, 4 H), 7.06 (t, J = 7.2 Hz, 1 H), 6.92 (t, J = 7.2 Hz, 1 H), 3.43–3.29 (m, 4 H). 13C NMR [75 MHz, CDCl3–CCl4 (1:1)]: δ = 142.0, 137.6, 133.3, 129.8, 128.0, 125.5, 124.7, 122.6, 122.0, 120.4, 119.8, 111.1, 70.5, 40.1. HRMS (ES+): m/z calcd for C17H15S2NCl [M + H]+: 332.0328; found: 332.0341. 3-[2-(3,4-Dimethoxyphenyl)-1,3-dithiolan-2-yl]-1H-indole (12f) Yield 0.051 g (35%); brown solid, mp 100–103 °C (EtOAc–hexane, 5:95). IR: ν = 3158, 2917, 2848, 1594, 1565, 1510, 1439, 1379, 1334, 1268, 1201 cm–1. 1H NMR [300 MHz, CDCl3–CCl4 (1:1)]: δ = 7.83 (br s, 1 H), 7.40 (d, J = 8.1 Hz, 1 H), 7.30 (d, J = 2.2 Hz, 1 H), 7.18 (t, J = 3.6 Hz, 1 H), 7.11 (d, J = 2.2 Hz, 1 H), 7.06 (t, J = 7.2 Hz, 2 H), 6.92 (t, J = 7.2 Hz, 1 H), 6.60 (d, J = 8.1 Hz, 1 H), 3.76 (s, 3 H), 3.73 (s, 3 H), 3.41–3.30 (m, 4 H). 13C NMR [75 MHz, CDCl3–CCl4 (1:1)]: δ = 148.4, 137.6, 135.5, 125.6, 125.0, 122.4, 122.2, 120.9, 119.6, 112.1, 111.0, 110.2, 71.2, 55.8, 55.7, 39.9. HRMS (ES+): m/z calcd for C19H19S2NO2Na [M + Na]+: 380.0749; found: 380.0750.
    • 17a Akgün E, Tunali M, Pindur U. Liebigs Ann. Chem. 1986; 9: 1628
    • 17b Rubiralta M, Casamitjana N. Tetrahedron 1988; 44: 443
    • 17c Jo S, Tanimoto S, Sugimoto T, Okano M. Bull. Chem. Soc. Jpn. 1981; 54: 2120