Synlett 2013; 24(14): 1861-1864
DOI: 10.1055/s-0033-1339327
letter
© Georg Thieme Verlag Stuttgart · New York

Synthetic Efforts toward the Isoindolinone Core of Muironolide A

Courtnay E. Shaner
Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA   Fax: +1(309)4385538 (department)   eMail: tmitche@ilstu.edu
,
Gregory M. Ferrence
Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA   Fax: +1(309)4385538 (department)   eMail: tmitche@ilstu.edu
,
T. Andrew Mitchell*
Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA   Fax: +1(309)4385538 (department)   eMail: tmitche@ilstu.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 27. Mai 2013

Accepted after revision: 07. Juni 2013

Publikationsdatum:
10. Juli 2013 (eFirst)

Abstract

Studies directed toward the isoindolinone core of muironolide A are described. An initial plan to implement an intramolecular Diels–Alder cycloaddition was thwarted by an undesired conjugate addition during the attempted preparation of the Diels–Alder substrate. A revised retrosynthetic analysis revealed a direct, albeit challenging, intermolecular Diels–Alder disconnection. Toward this end, a sterically hindered and electronically deactivated diene was utilized with N-phenylmaleimide to achieve a Diels–­Alder cycloaddition.

Supporting Information

 
  • References and Notes

  • 1 Dalisay DS, Morinaka BI, Skepper CK, Molinski TF. J. Am. Chem. Soc. 2009; 131: 7552
  • 2 Searle PA, Molinski TF. J. Am. Chem. Soc. 1995; 117: 8126
  • 3 Haustedt LO, Hartung IV, Hoffmann HM. R. Angew. Chem. Int. Ed. 2003; 42: 2711
  • 4 Molinski reported moderate anticancer and antifungal activity (see ref. 1).
    • 5a Flores B, Molinski TF. Org. Lett. 2011; 13: 3932
    • 5b While this manuscript was in press, the following was published: Xiao Q, Young K, Zakarian A. Org. Lett. 2013; 15: 3314
    • 6a Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 6b Kristensen TE, Vestli K, Jakobsen MG, Hansen FK, Hansen T. J. Org. Chem. 2010; 75: 1620
  • 7 Lager E, Sundin A, Toscano RA, Delgado G, Sterner O. Tetrahedron Lett. 2007; 48: 4215
    • 8a Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
    • 8b Yue X, Li Y. Synthesis 1996; 736
    • 8c Almeida WP, Correia CR. D. Tetrahedron Lett. 1994; 35: 1367
    • 9a Swamy KC. K, Kumar NN. B, Balaraman E, Kumar KV. P. P. Chem. Rev. 2009; 109: 2551
    • 9b Smith AB. III, Simov V. Org. Lett. 2006; 8: 3315
  • 10 Parenty A, Moreau X, Campagne J.-M. Chem. Rev. 2006; 106: 911
  • 11 Ohno M, Mori K, Hattori T, Eguchi S. J. Org. Chem. 1995; 55: 6086
  • 12 Takao K, Munakata R, Tadano K. Chem. Rev. 2005; 105: 4779
  • 13 Coleman RS, Liu P.-H. Org. Lett. 2004; 6: 577
    • 14a Pedregal C, Ezquerra J, Escribano A, Carreno MC, Ruano JL. G. Tetrahedron Lett. 1994; 35: 2053
    • 14b Langlois N, Rojas A. Tetrahedron Lett. 1993; 34: 2477
    • 15a Dittami JP, Xu F, Qi H, Martin MW, Bordner J, Decosta DL, Kiplinger J, Reiche P, Ware R. Tetrahedron Lett. 1995; 36: 4197
    • 15b Dubs P, Scheffold R. Helv. Chim. Acta 1967; 50: 798
  • 16 Bischofberger N, Waldmann H, Saito T, Simon ES, Lees W, Bednarski MD, Whitesides GM. J. Org. Chem. 1988; 53: 3457
    • 17a Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
    • 17b Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2003; 110: 704
    • 18a Baum JS, Shook DA, Davies HM. L, Smith HD. Synth. Commun. 1987; 17: 1709
    • 18b Davies HM. L, Cantrell WR. Jr, Romines KR, Baum JS. Org. Synth., Coll. Vol. IX 1998; 422
    • 19a Whitehouse DL, Nelson KH, Savinov SN, Lowe RS, Austin DJ. Bioorg. Med. Chem. Lett. 1998; 6: 1273
    • 19b Brown DS, Elliot MC, Moody CJ, Mowlem TJ, Marion JP. Jr, Padwa A. J. Org. Chem. 1994; 59: 2447
  • 20 The anti-diastereomer 15 is presumed to be favored.
  • 21 Kawamoto AM, Willis M. J. Chem. Soc., Perkin Trans. 1 2001; 1916
  • 22 Clemens RJ, Hyatt JA. J. Org. Chem. 1985; 50: 2431
  • 23 Kuwahara S, Moriguchi M, Miyagawa K, Kono M, Kodama O. Tetrahedron Lett. 1995; 36: 3201
  • 24 The deposition number CCDC-940982 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html.
  • 25 Experimental Procedure for the Synthesis of Isoindolinone 21: N-Phenylmaleimide 20 (89 mg, 0.51 mmol), BHT (11 mg, 0.05 mmol), and diene 6 (56 mg, 0.25 mmol) were dissolved in toluene (1.0 mL). The solution was sealed in a Teflon-capped vial, heated to 100 °C for 6 d, cooled to 23 °C, and then concentrated under reduced pressure. Purification by flash column chromatography (hexanes–EtOAc, 60:40) delivered isoindolinone 21 (75 mg, 76%) as a white solid; mp 80–82 °C; Rf  = 0.13 (hexanes–EtOAc, 60:40). IR (neat): 1769, 1705, 1147, 727, 691 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.39 (s, 3 H), 1.54 (s, 9 H), 2.71 (ddd, J = 2.8, 9.0, 17.8 Hz, 1 H), 3.10 (ddd, J = 1.3, 7.5, 17.8 Hz, 1 H), 3.36 (d, J = 8.9 Hz, 1 H), 3.49 (ddd, J = 1.3, 8.9, 9.0 Hz, 1 H), 3.63 (d, J = 11.6 Hz, 1 H), 4.73 (d, J = 11.6 Hz, 1 H), 6.97 (dd, J = 2.8, 7.5 Hz, 1 H), 7.18–7.20 (m, 2 H), 7.38–7.48 (m, 3 H). 13C NMR (125 MHz, CDCl3): δ = 24.5, 26.7, 28.1 (3), 35.8, 39.1, 47.8, 53.9, 83.3, 126.5 (2), 129.0, 129.3 (2), 131.4, 131.6, 139.9, 150.4, 163.7, 175.5, 177.5. HRMS (ESI): m/z [M + H]+ calcd for C22H25N2O5: 397.1763; found: 397.1769.