Synlett 2013; 24(13): 1643-1648
DOI: 10.1055/s-0033-1339316
letter
© Georg Thieme Verlag Stuttgart · New York

Rh(I)-Catalyzed Carbon–Carbon Double-Bond Formation by Coupling of (Quinolin-8-yl)methanone with Arylaldehyde Tosylhydrazone

Yexia Zhang
Department of Chemistry, College of Science, Tianjin University, Tianjin 300072, P. R. of China   Fax: +86(22)27403475   Email: wjh@tju.edu.cn
,
Jingjing Wang
Department of Chemistry, College of Science, Tianjin University, Tianjin 300072, P. R. of China   Fax: +86(22)27403475   Email: wjh@tju.edu.cn
,
Jianhui Wang*
Department of Chemistry, College of Science, Tianjin University, Tianjin 300072, P. R. of China   Fax: +86(22)27403475   Email: wjh@tju.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 11 April 2013

Accepted after revision: 05 June 2013

Publication Date:
17 July 2013 (online)


Abstract

An alternative method for the direct arylvinylation of (quinolin-8-yl)methanone with substituted N′-benzylidene-4-methyl­benzenesulfonohydrazide is described. The desired 3-aryl-1-(quinolin-8-yl)prop-2-en-1-one products are obtained in high yields through the catalytic reaction of (quinolin-8-yl)methanone and N′-arylidene-4-methylbenzenesulfonohydrazide (2 equiv) with [Rh(PPh3)3Cl] (10 mol%), Ag2O (0.5 equiv), and Cs2CO3 (2 equiv) at 130 °C for 48 hours. Two plausible mechanisms involving C–H activation and migratory insertion of the carbene into the rhodium–carbon bond were proposed to explain the formation of the product.

 
  • References and Notes


    • For selected reviews, see:
    • 1a Gandeepan P, Cheng CH. J. Am. Chem. Soc. 2012; 134: 5738
    • 1b Casiraghi G, Battistini L, Curti C, Rassu G, Zanardi F. Chem. Rev. 2011; 111: 3076
    • 1c Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
    • 1d Casiraghi G, Zanardi F. Chem. Rev. 2000; 100: 1929
    • 1e Peng ZY, Ma FF, Zhu LF, Xie XM, Zhang ZG. J. Org. Chem. 2009; 74: 6855
    • 1f Chatterjee AK, Grubbs RH. Org. Lett. 1999; 1: 1751
    • 1g Shen YC. Acc. Chem. Res. 1998; 31: 584
    • 1h Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
    • 1i Boutagy J, Thomas R. Chem. Rev. 1974; 74: 87

      For selected reviews, see:
    • 2a Xiao Q, Zhang Y, Wang JB. Acc. Chem. Res. 2013; 46: 236
    • 2b Liu C, Zhang H, Shi W, Lei AW. Chem. Rev. 2011; 111: 1780
    • 2c James CA, Snieckus V. J. Org. Chem. 2009; 74: 4080
    • 2d Takacs JM, Anderson LG, Bindu Madhavan GV, Creswell MW, Seely FL, Devroy WF. Organometallics 1986; 5: 2395

      For selected reviews, see:
    • 3a Johansson Seechurn C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 3b Ruan JW, Xiao JL. Acc. Chem. Res. 2011; 44: 614
    • 3c Ref. 1c.
    • 3d Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
    • 3e Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
    • 3f Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 3g Amatore C, Jutand A. Acc. Chem. Res. 2000; 33: 314
    • 3h Cabri W, Candiani I. Acc. Chem. Res. 1995; 28: 2
    • 3i Meijere A, Meyer FE. Angew. Chem. Int. Ed. Engl. 1995; 33: 2379
    • 3j Heck RF, Nolley JP. J. Org. Chem. 1972; 14: 2320
    • 4a Zheng L, Wang JH. Chem. Eur. J. 2012; 18: 9699
    • 4b Besset T, Kuhl N, Patureau FW, Glorius F. Chem. Eur. J. 2011; 17: 7167
    • 4c Willwacher J, Rakshit S, Glorius F. Org. Biomol. Chem. 2011; 9: 4736
    • 4d Rakshit S, Grohmann C, Besset T, Glorius F. J. Am. Chem. Soc. 2011; 133: 2350
    • 4e Mochida S, Hirano K, Satoh T, Miura M. J. Org. Chem. 2011; 76: 3024
    • 4f Wang F, Song G, Du Z, Li X. J. Org. Chem. 2011; 76: 2926
    • 4g Tsai AS, Brasse M, Bergman RG, Ellman JA. Org. Lett. 2011; 13: 540
    • 4h Patureau FW, Besset T, Kuhl N, Glorius F. J. Am. Chem. Soc. 2011; 133: 2154
    • 4i Qian B, Xie P, Xie YJ, Huang H. Org. Lett. 2011; 13: 2580
    • 4j Liu XZ, Hii KK. J. Org. Chem. 2011; 76: 8022
    • 4k Yu YY, Niphakis MJ, Georg GI. Org. Lett. 2011; 13: 5932
    • 4l Wang L, Liu S, Li Z, Yu YP. Org. Lett. 2011; 13: 6137
    • 4m Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9982
    • 4n Wang F, Song GY, Li XW. Org. Lett. 2010; 12: 5430
    • 4o Wang DH, Engle KM, Shi BF, Yu JQ. Science 2010; 327: 315
    • 4p García-Rubia A, Arrayás RJ, Carretero JC. Angew. Chem. Int. Ed. 2009; 48: 6511
    • 4q Würtz S, Rakshit S, Neumann JJ, Dröge T, Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
    • 4r Ueura K, Satoh T, Miura M. J. Org. Chem. 2007; 72: 5362
    • 4s Ueura K, Satoh T, Miura M. Org. Lett. 2007; 9: 1407
    • 4t Cai G, Fu Y, Li Y, Wan X, Shi Z. J. Am. Chem. Soc. 2007; 129: 7666
    • 4u Zaitsev VG, Daugulis O. J. Am. Chem. Soc. 2005; 127: 4156
    • 4v Boele MD. K, van Strijdonck GP. F, de Vries AH. M, Kamer PC. J, de Vries JG, van Leeuwen PW. N. M. J. Am. Chem. Soc. 2002; 124: 1586
    • 4w Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 4x Jia C, Piao D, Oyamada J, Lu W, Kitamura T, Fujiwara Y. Science 2000; 287: 1992
    • 5a Zhou L, Ye F, Zhang Y, Wang JB. Org. Lett. 2012; 14: 922
    • 5b Zhang Y, Wang JB. Top. Curr. Chem. 2012; 327: 239
    • 5c Khanna A, Maung C, Johnson KR, Luong TT, Van Vranken DL. Org. Lett. 2012; 14: 3233
    • 5d Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 5e Zhou L, Ye F, Zhang Y, Wang JB. J. Am. Chem. Soc. 2010; 132: 13590
    • 5f Barluenga J, Escribano M, Aznar F, Valdés C. Angew. Chem. 2010; 122: 7008
    • 5g Barluenga J, Tomás-Gamasa M, Aznar F, Valdés C. Adv. Synth. Catal. 2010; 352: 3235
    • 5h Xiao Q, Ma J, Yang Y, Zhang Y, Wang JB. Org. Lett. 2009; 11: 4732
    • 5i Barluenga J, Escribano M, Moriel P, Aznar F, Valdés C. Chem. Eur. J. 2009; 15: 13291
    • 5j Yu WY, Tsoi YT, Zhou Z, Chan AS. C. Org. Lett. 2009; 11: 469
    • 5k Kudirka R, Devine SK. J, Adams CS, Van Vranken DL. Angew. Chem. 2009; 121: 3731
    • 5l Chen S, Wang JB. Chem. Commun. 2008; 4198
    • 5m Devine SK. J, Van Vranken DL. Org. Lett. 2007; 9: 2047
    • 5n Barluenga J, Moriel P, Valdés C, Aznar F. Angew. Chem. Int. Ed. 2007; 46: 5587
    • 5o Greenman KL, Van Vranken DL. Tetrahedron 2005; 61: 6438
    • 7a Hossain ML, Ye F, Zhang Y, Wang JB. J. Org. Chem. 2013; 78: 1236
    • 7b Xiao Q, Xia Y, Li H, Zhang Y, Wang JB. Angew. Chem. 2011; 123: 1146
    • 7c Zhou L, Ye F, Ma JC, Zhang Y, Wang JB. Angew. Chem. Int. Ed. 2011; 50: 3510
    • 7d Zhou L, Shi Y, Xiao Q, Liu YZ, Ye F, Zhang Y, Wang JB. Org. Lett. 2011; 13: 968
    • 7e Ye F, Shi Y, Zhou L, Xiao Q, Zhang Y, Wang JB. Org. Lett. 2011; 13: 5020
    • 8a Adlington RM, Barrett AG. M. Acc. Chem. Res. 1983; 16: 55
    • 8b Shapiro RH. Org. React. 1976; 23: 405
    • 8c Bamford WR, Stevens TS. M. J. Chem. Soc. 1952; 4735
  • 9 McMahon RJ, Abelt CJ, Chapman OL, Johnson JW, Kreil CL, LeRoux JP, Mooring AM, West PR. J. Am. Chem. Soc. 1987; 109: 2456
  • 10 Wang JJ, Liu BW, Zhao HT, Wang JH. Organometallics 2012; 31: 8598
  • 11 Wentzel MT, Reddy VJ, Hyster TK, Douglas CJ. Angew. Chem. Int. Ed. 2009; 48: 6121
    • 12a Palacios L, Miao X, Giuseppe AD, Pascal S, Cunchillos C, Castarlenas R, Pérez-Torrente JJ, Lahoz FJ, Dixneuf PH, Oro LA. Organometallics 2011; 30: 5208
    • 12b Cohen R, Rybtchinski B, Gandelman M, Rozenberg H, Martin JM. L, Milstein D. J. Am. Chem. Soc. 2003; 125: 6532
    • 12c Vigalok A, Milstein D. Organometallics 2000; 19: 2061
    • 12d Schwab P, Grubbs RH, Ziller JW. J. Am. Chem. Soc. 1996; 118: 100
    • 12e Gandelman M, Rybtchinski B, Ashkenazi N, Gauvin RM, Milstein D. J. Am. Chem. Soc. 2001; 123: 5372
    • 13a Lafrance M, Rowley CN, Woo TK, Fagnou K. J. Am. Chem. Soc. 2006; 128: 8754
    • 13b Garcia-Cuadrado D, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2006; 128: 1066
    • 13c Sokolov VI, Troitskaya LL, Reutov OA. J. Organomet. Chem. 1979; 182: 537

      Some articles selected for review:
    • 14a Barluenga J, Vicente R, López LA, Rubio E, Tomas M, Alvarez-Ruá C. J. Am. Chem. Soc. 2004; 126: 470
    • 14b Barluenga J, Vicente R, Barrio P, López LA, Tomás M. J. Am. Chem. Soc. 2004; 126: 5974
    • 14c Barluenga J, Vicente R, López LA, Tomás M. J. Am. Chem. Soc. 2006; 128: 7050
    • 14d Qian Y, Zavalij PJ, Hu W, Doyle MP. Org. Lett. 2013; 15: 1564
    • 14e Davies HM. L, Antoulinakis EG. Org. Lett. 2000; 2: 4153
    • 14f Jiang N, Qu Z, Wang J. Org. Lett. 2001; 3: 2989
  • 15 Synthesis of 3-Phenyl-1-(quinolin-8-yl)prop-2-en-1-one (Scheme 2 and Table 3, Entry 1); Typical Procedure: A mixture of (quinolin-8-yl)methanone (85.5 mg, 0.5 mmol), N′-benzylidene-4-methylbenzenesulfonohydrazide (548.6 mg, 1.0 mmol), Ag2O (58.0 mg, 0.25 mmol), Cs2CO3 (232 mg, 1.0 mmol), and [Rh(PPh3)3Cl] (46.65 mg, 0.05 mmol) under nitrogen in a screw-capped thick-walled Pyrex tube was heated at 130 °C with stirring. After heating for 48 h, the reaction mixture was cooled and directly purified by column chromatography on silica gel (hexane–EtOAc, 20:1) to afford 3-phenyl-1-(quinolin-8-yl)prop-2-en-1-one (75% yield).