Synlett 2013; 24(10): 1307-1308
DOI: 10.1055/s-0033-1338948
spotlight
© Georg Thieme Verlag Stuttgart · New York

Cyanine Dyes

Neil Norouzi
School of Chemistry, University of Edinburgh, King’s Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK   eMail: N.Norouzi@sms.ed.ac.uk
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
15. Mai 2013 (online)

Introduction

Cyanine dyes are highly conjugated, fluorescent molecules with absorption and emission wavelengths in the near infra-red region (700–900 nm). The simplest synthetic route to heptamethine cyanine dyes 1 (so-called because of the seven carbons in the conjugated backbone) was first described by Narayanan and Patonay who heated N-alkylated indolium salts 2 with 2-chloro-1-formyl-3-(hydroxyl methylene) (3) in a Vilsmeier-type reaction.[1] These heptamethine cyanine scaffolds can be readily modified through displacement of the labile chloride group by nucleophiles,[2] [3] [4] resulting in fluorescent molecules with varying quantum yields, extinction coefficients, and fluorescence maxima. Conjugation to biomolecules is achieved through chlorine substitution by 3-(4-hydroxyphenyl) propionic acid.

The resulting cyanine dye has a carboxylic acid moiety which can be coupled to an amine-containing compound via amide-bond formation. Enhanced aqueous solubility is typically achieved through sulfonation of the indole 2. As biological tissue does not absorb strongly within the near infra-red window, cyanine fluorophores are ideal for in vivo optical imaging application,[5] [6] [7] while clinically, indocyanine green has been used for over 25 years in fluorescence angiography and opthalmology (mouse LD50 = 60 mg/kg).[8,9]

Zoom Image
Scheme 1 Synthesis of heptamethine cyanine dyes 1
 
  • References

  • 1 Narayanan N, Lee S, Sy J, Patonay G. J. Org. Chem. 1995; 5: 2391
  • 2 Dasari M, Kim D, Lee S, Brown M, Davis M, Murthy N. Org. Lett. 2010; 12: 3300
  • 3 Wang R, Yu F, Chen L, Chen H, Wang L, Zhang W. Chem. Commun. 2012; 48: 11757
  • 4 Myochin T, Kiyose K, Hanaoka K, Kojima H, Terai T, Nagano T. J. Am. Chem. Soc. 2011; 133: 3401
  • 5 Fry ES. Appl. Opt. 2000; 39: 2743
  • 6 Linder KE, Metcalfe E, Nanjappan P, Arunachalam T, Ramos K, Skedzielewski TM, Marinelli ER, Tweedle MF, Nunn AD, Swenson RE. Biocon. Chem. 2011; 22: 1287
  • 7 Thielbeer F, Chankeshwara SV, Johansson EM. V, Norouzi N, Bradley M. Chem. Sci. 2013; 4: 425
  • 8 Taichman GC, Ph D, Hendry P, Keon W. Tex. Heart Inst. J. 1987; 14: 133
  • 9 Kodjikian L, Richter T, Halberstadt M, Beby F, Flueckiger F, Boehnke M, Garweg JG. Graefe‘s Arch. Clin. Exp. Ophthalmol. 2005; 243: 917
  • 10 Amaravadi RK, Thompson CB. Clin. Cancer Res. 2007; 13: 7271
  • 11 Latt SA, Stetten G. J. Histochem. Cytochem. 1976; 24: 24
  • 12 Valko M, Leibfritz D, Moncol J, Cronin MT. D, Mazur M, Telser J. Int. J. Biochem. Cell Biol. 2007; 39: 44
  • 13 Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y, Nagano T. J. Am. Chem. Soc. 2010; 132: 2795
  • 14 Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. Science 2008; 322: 587
  • 15 Griesbeck AG, Hoffmann N, Warzecha K.-D. Acc. Chem. Res. 2007; 40: 128
  • 16 Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R. Environ. Sci. Technol. 2008; 42: 8959
  • 17 Zheng H, Yan M, Fan X.-X, Sun D, Yang S.-Y, Yang L.-J, Li J.-D, Jiang Y.-B. Chem. Commun. 2012; 48: 2243
  • 18 Tan C, Atas E, Müller JG, Pinto MR, Kleiman VD, Schanze KS. J. Am. Chem. Soc. 2004; 126: 13685