Semin Thromb Hemost 2013; 39(04): 329-337
DOI: 10.1055/s-0033-1334483
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Plasminogen Receptors: The First Quarter Century

Lindsey A. Miles
1  Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
,
Robert J. Parmer
2  Department of Medicine, University of California San Diego, Veterans Administration San Diego Healthcare System, San Diego, California
› Author Affiliations
Further Information

Publication History

Publication Date:
26 March 2013 (online)

Abstract

The interaction of plasminogen with cell surfaces results in promotion of plasmin formation and retention on the cell surface. This results in arming cell surfaces with the broad-spectrum proteolytic activity of plasmin. Over the past quarter century, key functional consequences of the association of plasmin with the cell surface have been elucidated. Physiologic and pathophysiologic processes with plasmin-dependent cell migration as a central feature include inflammation, wound healing, oncogenesis, metastasis, myogenesis, and muscle regeneration. Cell surface plasmin also participates in neurite outgrowth and prohormone processing. Furthermore, plasmin-induced cell signaling also affects the functions of inflammatory cells, via production of cytokines, reactive oxygen species, and other mediators. Finally, plasminogen receptors regulate fibrinolysis. In this review, we highlight emerging data that shed light on longstanding controversies and raise new issues in the field. We focus on (1) the impact of the recent X-ray crystal structures of plasminogen and the development of antibodies that recognize cell-induced conformational changes in plasminogen on our understanding of the interaction of plasminogen with cells; (2) the relationship between apoptosis and plasminogen binding to cells; (3) the current status of our understanding of the molecular identity of plasminogen receptors and the discovery of a structurally unique novel plasminogen receptor, Plg-RKT; (4) the determinants of the interplay between distinct plasminogen receptors and cellular functions; and (5) new insights into the role of colocalization of plasminogen and plasminogen activator receptors on the cell surface.