Semin Neurol 2012; 32(04): 374-400
DOI: 10.1055/s-0032-1331810
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Advanced Neuroimaging in Traumatic Brain Injury

Brian L. Edlow
1   Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
2   Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
3   Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
,
Ona Wu
3   Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
4   Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2013 (online)

Abstract

Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization, and interpretation.

 
  • References

  • 1 Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010
  • 2 Tanielian TL, Jaycox L. Rand Corporation. Invisible wounds of war: psychological and cognitive injuries, their consequences, and services to assist recovery. Santa Monica, CA: RAND; 2008: xliii , 453
  • 3 Ommaya AK, Gennarelli TA. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain 1974; 97 (4) 633-654
  • 4 Shaw NA. The neurophysiology of concussion. Prog Neurobiol 2002; 67 (4) 281-344
  • 5 Ropper AH, Gorson KC. Clinical practice. Concussion. N Engl J Med 2007; 356 (2) 166-172
  • 6 Gentry LR. Imaging of closed head injury. Radiology 1994; 191 (1) 1-17
  • 7 Gentry LR, Godersky JC, Thompson B. MR imaging of head trauma: review of the distribution and radiopathologic features of traumatic lesions. AJR Am J Roentgenol 1988; 150 (3) 663-672
  • 8 Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 1989; 15 (1) 49-59
  • 9 Strich SJ. Diffuse degeneration of the cerebral white matter in severe dementia following head injury. J Neurol Neurosurg Psychiatry 1956; 19 (3) 163-185
  • 10 Strich SJ. Shearing of nerve fibers as a cause of brain damage due to head injury: a pathological study of twenty cases. Lancet 1961; 2: 443-448
  • 11 Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ. Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet 1994; 344 (8929) 1055-1056
  • 12 Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ. Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma 1995; 12 (4) 565-572
  • 13 Gennarelli TA, Thibault LE, Graham DI. Diffuse axonal injury: an important form of traumatic brain damage. Neuroscientist 1998; 4: 202-215
  • 14 Maxwell WL, Povlishock JT, Graham DL. A mechanistic analysis of nondisruptive axonal injury: a review. J Neurotrauma 1997; 14 (7) 419-440
  • 15 Adams JH, Graham DI, Jennett B. The neuropathology of the vegetative state after an acute brain insult. Brain 2000; 123 (Pt 7) 1327-1338
  • 16 Haacke EM, Duhaime AC, Gean AD , et al. Common data elements in radiologic imaging of traumatic brain injury. J Magn Reson Imaging 2010; 32 (3) 516-543
  • 17 Duhaime AC, Gean AD, Haacke EM , et al; Common Data Elements Neuroimaging Working Group Members, Pediatric Working Group Members. Common data elements in radiologic imaging of traumatic brain injury. Arch Phys Med Rehabil 2010; 91 (11) 1661-1666
  • 18 Dubroff JG, Newberg A. Neuroimaging of traumatic brain injury. Semin Neurol 2008; 28 (4) 548-557
  • 19 Weiss N, Galanaud D, Carpentier A, Naccache L, Puybasset L. Clinical review: prognostic value of magnetic resonance imaging in acute brain injury and coma. Crit Care 2007; 11 (5) 230
  • 20 Marshall LF, Marshall SB, Klauber MR , et al. A new classification of head injury based on computerized tomography. J Neurosurg 1991; 75: S14-S20
  • 21 Maas AI, Hukkelhoven CW, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery 2005; 57 (6) 1173-1182 , discussion 1173–1182
  • 22 Murray GD, Butcher I, McHugh GS , et al. Multivariable prognostic analysis in traumatic brain injury: results from the IMPACT study. J Neurotrauma 2007; 24 (2) 329-337
  • 23 Steyerberg EW, Mushkudiani N, Perel P , et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 2008; 5 (8) e165 , discussion e165
  • 24 Perel P, Arango M, Clayton T , et al; MRC CRASH Trial Collaborators. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ 2008; 336 (7641) 425-429
  • 25 Nelson DW, Nyström H, MacCallum RM , et al. Extended analysis of early computed tomography scans of traumatic brain injured patients and relations to outcome. J Neurotrauma 2010; 27 (1) 51-64
  • 26 Yuh EL, Cooper SR, Ferguson AR, Manley GT. Quantitative CT improves outcome prediction in acute traumatic brain injury. J Neurotrauma 2012; 29 (5) 735-746
  • 27 Smits M, Dippel DW, de Haan GG , et al. External validation of the Canadian CT Head Rule and the New Orleans Criteria for CT scanning in patients with minor head injury. JAMA 2005; 294 (12) 1519-1525
  • 28 Firsching R, Woischneck D, Diedrich M , et al. Early magnetic resonance imaging of brainstem lesions after severe head injury. J Neurosurg 1998; 89 (5) 707-712
  • 29 Paterakis K, Karantanas AH, Komnos A, Volikas Z. Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase. J Trauma 2000; 49 (6) 1071-1075
  • 30 Gentry LR, Godersky JC, Thompson B, Dunn VD. Prospective comparative study of intermediate-field MR and CT in the evaluation of closed head trauma. AJR Am J Roentgenol 1988; 150 (3) 673-682
  • 31 Lee H, Wintermark M, Gean AD, Ghajar J, Manley GT, Mukherjee P. Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3T MRI. J Neurotrauma 2008; 25 (9) 1049-1056
  • 32 Skandsen T, Kvistad KA, Solheim O, Lydersen S, Strand IH, Vik A. Prognostic value of magnetic resonance imaging in moderate and severe head injury: a prospective study of early MRI findings and one-year outcome. J Neurotrauma 2011; 28 (5) 691-699
  • 33 Lagares A, Ramos A, Pérez-Nuñez A , et al. The role of MR imaging in assessing prognosis after severe and moderate head injury. Acta Neurochir (Wien) 2009; 151 (4) 341-356
  • 34 Betz J, Zhuo J, Roy A, Shanmuganathan K, Gullapalli RP. Prognostic value of diffusion tensor imaging parameters in severe traumatic brain injury. J Neurotrauma 2012; 29 (7) 1292-1305
  • 35 Henry LC, Tremblay J, Tremblay S , et al. Acute and chronic changes in diffusivity measures after sports concussion. J Neurotrauma 2011; 28 (10) 2049-2059
  • 36 Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S. Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 1997; 49 (1) 113-119
  • 37 Liu AY, Maldjian JA, Bagley LJ, Sinson GP, Grossman RI. Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol 1999; 20 (9) 1636-1641
  • 38 Muccio CF, De Simone M, Esposito G, De Blasio E, Vittori C, Cerase A. Reversible post-traumatic bilateral extensive restricted diffusion of the brain. A case study and review of the literature. Brain Inj 2009; 23 (5) 466-472
  • 39 Ommaya AK. Head injury mechanisms and the concept of preventive management: a review and critical synthesis. J Neurotrauma 1995; 12 (4) 527-546
  • 40 Scheid R, Preul C, Gruber O, Wiggins C, von Cramon DY. Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am J Neuroradiol 2003; 24 (6) 1049-1056
  • 41 Tong KA, Ashwal S, Holshouser BA , et al. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol 2004; 56 (1) 36-50
  • 42 Geurts BH, Andriessen TM, Goraj BM, Vos PE. The reliability of magnetic resonance imaging in traumatic brain injury lesion detection. Brain Inj 2012; 26 (12) 1439-1450
  • 43 Yanagawa Y, Tsushima Y, Tokumaru A , et al. A quantitative analysis of head injury using T2*-weighted gradient-echo imaging. J Trauma 2000; 49 (2) 272-277
  • 44 Scheid R, Walther K, Guthke T, Preul C, von Cramon DY. Cognitive sequelae of diffuse axonal injury. Arch Neurol 2006; 63 (3) 418-424
  • 45 Niogi SN, Mukherjee P, Ghajar J , et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol 2008; 29 (5) 967-973
  • 46 Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 1997; 204 (1) 272-277
  • 47 Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004; 52 (3) 612-618
  • 48 Tong KA, Ashwal S, Holshouser BA , et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology 2003; 227 (2) 332-339
  • 49 Greenberg SM, Vernooij MW, Cordonnier C , et al; Microbleed Study Group. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009; 8 (2) 165-174
  • 50 Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007; 130 (Pt 8) 1988-2003
  • 51 Scheid R, Ott DV, Roth H, Schroeter ML, von Cramon DY. Comparative magnetic resonance imaging at 1.5 and 3 Tesla for the evaluation of traumatic microbleeds. J Neurotrauma 2007; 24 (12) 1811-1816
  • 52 Kammond KE, Lupo JM, Xu D , et al. Microbleed Detection in Traumatic Brain Injury at 3T and 7T: Comparing 2D and 3D Gradient-Recalled Echo (GRE) Imaging with Susceptibility-Weighted Imaging (SWI). Paper presented at: ISMRM 17th Scientific Meeting & Exhibition; April 18–24, 2009; Honolulu, HI;
  • 53 Nandigam RN, Viswanathan A, Delgado P , et al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009; 30 (2) 338-343
  • 54 Gregoire SM, Chaudhary UJ, Brown MM , et al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009; 73 (21) 1759-1766
  • 55 Cordonnier C, Potter GM, Jackson CA , et al. Improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS). Stroke 2009; 40 (1) 94-99
  • 56 Stejskal EO. Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J Chem Phys 1965; 43 (10) 3597-3603
  • 57 Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996; 36 (6) 893-906
  • 58 Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996; 111 (3) 209-219
  • 59 Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994; 103 (3) 247-254
  • 60 Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed 2002; 15 (7-8) 456-467
  • 61 Mac Donald CL, Dikranian K, Song SK, Bayly PV, Holtzman DM, Brody DL. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp Neurol 2007; 205 (1) 116-131
  • 62 Li J, Li XY, Feng DF, Gu L. Quantitative evaluation of microscopic injury with diffusion tensor imaging in a rat model of diffuse axonal injury. Eur J Neurosci 2011; 33 (5) 933-945
  • 63 Rutgers DR, Fillard P, Paradot G, Tadié M, Lasjaunias P, Ducreux D. Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury. AJNR Am J Neuroradiol 2008; 29 (9) 1730-1735
  • 64 Inglese M, Makani S, Johnson G , et al. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg 2005; 103 (2) 298-303
  • 65 Huisman TA, Schwamm LH, Schaefer PW , et al. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 2004; 25 (3) 370-376
  • 66 Kumar R, Gupta RK, Husain M , et al. Comparative evaluation of corpus callosum DTI metrics in acute mild and moderate traumatic brain injury: its correlation with neuropsychometric tests. Brain Inj 2009; 23 (7) 675-685
  • 67 Lipton ML, Gellella E, Lo C , et al. Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. J Neurotrauma 2008; 25 (11) 1335-1342
  • 68 Xu J, Rasmussen IA, Lagopoulos J, Håberg A. Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J Neurotrauma 2007; 24 (5) 753-765
  • 69 Grossman EJ, Ge Y, Jensen JH , et al. Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J Neurotrauma 2012; 29 (13) 2318-2327
  • 70 Lo C, Shifteh K, Gold T, Bello JA, Lipton ML. Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. J Comput Assist Tomogr 2009; 33 (2) 293-297
  • 71 Holli KK, Wäljas M, Harrison L , et al. Mild traumatic brain injury: tissue texture analysis correlated to neuropsychological and DTI findings. Acad Radiol 2010; 17 (9) 1096-1102
  • 72 Singh M, Jeong J, Hwang D, Sungkarat W, Gruen P. Novel diffusion tensor imaging methodology to detect and quantify injured regions and affected brain pathways in traumatic brain injury. Magn Reson Imaging 2010; 28 (1) 22-40
  • 73 Palacios EM, Fernandez-Espejo D, Junque C , et al. Diffusion tensor imaging differences relate to memory deficits in diffuse traumatic brain injury. BMC Neurol 2011; 11: 24
  • 74 Niogi SN, Mukherjee P, Ghajar J , et al. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain 2008; 131 (Pt 12) 3209-3221
  • 75 Geary EK, Kraus MF, Pliskin NH, Little DM. Verbal learning differences in chronic mild traumatic brain injury. J Int Neuropsychol Soc 2010; 16 (3) 506-516
  • 76 Mac Donald CL, Johnson AM, Cooper D , et al. Detection of blast-related traumatic brain injury in U.S. military personnel. N Engl J Med 2011; 364 (22) 2091-2100
  • 77 Newcombe VF, Williams GB, Scoffings D , et al. Aetiological differences in neuroanatomy of the vegetative state: insights from diffusion tensor imaging and functional implications. J Neurol Neurosurg Psychiatry 2010; 81 (5) 552-561
  • 78 Tollard E, Galanaud D, Perlbarg V , et al. Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit Care Med 2009; 37 (4) 1448-1455
  • 79 Miles L, Grossman RI, Johnson G, Babb JS, Diller L, Inglese M. Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj 2008; 22 (2) 115-122
  • 80 Lipton ML, Gulko E, Zimmerman ME , et al. Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology 2009; 252 (3) 816-824
  • 81 Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 2002; 23 (5) 794-802
  • 82 Newcombe V, Chatfield D, Outtrim J , et al. Mapping traumatic axonal injury using diffusion tensor imaging: correlations with functional outcome. PLoS ONE 2011; 6 (5) e19214
  • 83 Kumar R, Husain M, Gupta RK , et al. Serial changes in the white matter diffusion tensor imaging metrics in moderate traumatic brain injury and correlation with neuro-cognitive function. J Neurotrauma 2009; 26 (4) 481-495
  • 84 Sidaros A, Engberg AW, Sidaros K , et al. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain 2008; 131 (Pt 2) 559-572
  • 85 Perlbarg V, Puybasset L, Tollard E, Lehéricy S, Benali H, Galanaud D. Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: a diffusion tensor imaging study using voxel-based approaches. Hum Brain Mapp 2009; 30 (12) 3924-3933
  • 86 Voss HU, Uluç AM, Dyke JP , et al. Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest 2006; 116 (7) 2005-2011
  • 87 Rizzo J. Military surges MRIs to war zone to diagnose brain injuries. Available at: http://security.blogs.cnn.com/2011/11/01/military-surges-mris-to-war-zone-to-diagnose-brain-injuries/ . Accessed July 26, 2012
  • 88 Xydakis MS, Butman JA, Pierpaoli C. Blast-related traumatic brain injury in U.S. military personnel. N Engl J Med 2011; 365 (9) 859-861 , author reply 860–861
  • 89 Salat D, Ward A, Kaye JA, Janowsky JS. Sex differences in the corpus callosum with aging. Neurobiol Aging 1997; 18 (2) 191-197
  • 90 Salat DH, Tuch DS, Greve DN , et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 2005; 26 (8) 1215-1227
  • 91 Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 2004; 51 (4) 807-815
  • 92 Tensaouti F, Lahlou I, Clarisse P, Lotterie JA, Berry I. Quantitative and reproducibility study of four tractography algorithms used in clinical routine. J Magn Reson Imaging 2011; 34 (1) 165-172
  • 93 Wang JY, Abdi H, Bakhadirov K, Diaz-Arrastia R, Devous Sr MD. A comprehensive reliability assessment of quantitative diffusion tensor tractography. Neuroimage 2012; 60 (2) 1127-1138
  • 94 Reese TG, Benner T, Wang R, Feinberg DA, Wedeen VJ. Halving imaging time of whole brain diffusion spectrum imaging and diffusion tractography using simultaneous image refocusing in EPI. J Magn Reson Imaging 2009; 29 (3) 517-522
  • 95 Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012; 67 (5) 1210-1224
  • 96 Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003; 49 (1) 177-182
  • 97 Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain 2007; 130 (Pt 10) 2508-2519
  • 98 Messé A, Caplain S, Paradot G , et al. Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum Brain Mapp 2011; 32 (6) 999-1011
  • 99 Smith SM, Jenkinson M, Johansen-Berg H , et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006; 31 (4) 1487-1505
  • 100 Smith SM, Johansen-Berg H, Jenkinson M , et al. Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc 2007; 2 (3) 499-503
  • 101 Cubon VA, Putukian M, Boyer C, Dettwiler A. A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. J Neurotrauma 2011; 28 (2) 189-201
  • 102 Kinnunen KM, Greenwood R, Powell JH , et al. White matter damage and cognitive impairment after traumatic brain injury. Brain 2011; 134 (Pt 2) 449-463
  • 103 Wada T, Asano Y, Shinoda J. Decreased fractional anisotropy evaluated using tract-based spatial statistics and correlated with cognitive dysfunction in patients with mild traumatic brain injury in the chronic stage. AJNR Am J Neuroradiol 2012; . [Epub ahead of print]
  • 104 Palacios EM, Sala-Llonch R, Junque C , et al. White matter integrity related to functional working memory networks in traumatic brain injury. Neurology 2012; 78 (12) 852-860
  • 105 Palacios EM, Sala-Llonch R, Junque C , et al. Long-term declarative memory deficits in diffuse TBI: correlations with cortical thickness, white matter integrity and hippocampal volume. Cortex 2012; . [Epub ahead of print]
  • 106 Smith SM, Jenkinson M, Woolrich MW , et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23 (Suppl. 01) S208-S219
  • 107 Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage 2012; 62 (2) 782-790
  • 108 Wang R, Wedeen VJ, Athinoula A. TrackVis. Boston, MA: Massachusetts General Hospital, Martinos Center for Biomedical Imaging; . Available at: http://www.trackvis.org . Accessed September 1, 2012
  • 109 Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 2006; 81 (2) 106-116
  • 110 Pieper S, Halle M, Kikinis R. 3D Slicer. In Proceedings of the 1st IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Piscataway, NJ: IEEE; 2004: 632-635
  • 111 Talairach J, Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme Medical Publishers; 1988
  • 112 Mazziotta J, Toga A, Evans A , et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001; 356 (1412) 1293-1322
  • 113 McConnell Brain Imaging Centre, Montreal Neurological Institute. Available at: www.bic.mni.mcgill.ca/ServicesAtlases/HomePage . Accessed September 1, 2012
  • 114 Laboratory of NeuroImaging, University of California Los Angeles. LONI Atlases. Available at: www.loni.ucla.edu/Atlases . Accessed September 1, 2012
  • 115 Parvizi J, Damasio AR. Neuroanatomical correlates of brainstem coma. Brain 2003; 126 (Pt 7) 1524-1536
  • 116 Wellcome Trust Centre for Neuroimaging. Statistical parametric mapping. Available at: www.fil.ion.ucl.ac.uk/spm . Accessed September 1, 2012
  • 117 McCausland Center for Brain Imaging, University of South Carolina. Available at: www.mccauslandcenter.sc.edu/mricro/mricron . Accessed September 1, 2012
  • 118 Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 2012; 61 (4) 1402-1418
  • 119 Oishi K, Faria A, Jiang H , et al. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants. Neuroimage 2009; 46 (2) 486-499
  • 120 Janke AL, de Zubicaray G, Rose SE, Griffin M, Chalk JB, Galloway GJ. 4D deformation modeling of cortical disease progression in Alzheimer's dementia. Magn Reson Med 2001; 46 (4) 661-666
  • 121 Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45 (2) 265-269
  • 122 Jones DK, Simmons A, Williams SC, Horsfield MA. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 1999; 42 (1) 37-41
  • 123 Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000; 44 (4) 625-632
  • 124 Catani M, Thiebaut de Schotten M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 2008; 44 (8) 1105-1132
  • 125 Hansen B, Flint JJ, Heon-Lee C , et al. Diffusion tensor microscopy in human nervous tissue with quantitative correlation based on direct histological comparison. Neuroimage 2011; 57 (4) 1458-1465
  • 126 Wang JY, Bakhadirov K, Devous Sr MD , et al. Diffusion tensor tractography of traumatic diffuse axonal injury. Arch Neurol 2008; 65 (5) 619-626
  • 127 Wang JY, Bakhadirov K, Abdi H , et al. Longitudinal changes of structural connectivity in traumatic axonal injury. Neurology 2011; 77 (9) 818-826
  • 128 Warner MA, Marquez de la Plata C, Spence J , et al. Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. J Neurotrauma 2010; 27 (12) 2121-2130
  • 129 Maxwell WL, MacKinnon MA, Stewart JE, Graham DI. Stereology of cerebral cortex after traumatic brain injury matched to the Glasgow outcome score. Brain 2010; 133 (Pt 1) 139-160
  • 130 Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 1982; 12 (6) 564-574
  • 131 Smith DH, Nonaka M, Miller R , et al. Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J Neurosurg 2000; 93 (2) 315-322
  • 132 Wilde EA, McCauley SR, Hunter JV , et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology 2008; 70 (12) 948-955
  • 133 Mulkern RV, Haker SJ, Maier SE. On high b diffusion imaging in the human brain: ruminations and experimental insights. Magn Reson Imaging 2009; 27 (8) 1151-1162
  • 134 Yoshiura T, Wu O, Zaheer A, Reese TG, Sorensen AG. Highly diffusion-sensitized MRI of brain: dissociation of gray and white matter. Magn Reson Med 2001; 45 (5) 734-740
  • 135 Melhem ER, Itoh R, Jones L, Barker PB. Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR Am J Neuroradiol 2000; 21 (10) 1813-1820
  • 136 Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med 2009; 62 (3) 717-730
  • 137 Bazarian JJ, Zhong J, Blyth B, Zhu T, Kavcic V, Peterson D. Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. J Neurotrauma 2007; 24 (9) 1447-1459
  • 138 Wedeen VJ, Rosene DL, Wang R , et al. The geometric structure of the brain fiber pathways. Science 2012; 335 (6076) 1628-1634
  • 139 Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 2005; 54 (6) 1377-1386
  • 140 Tuch DS, Reese TG, Wiegell MR, Wedeen VJ. Diffusion MRI of complex neural architecture. Neuron 2003; 40 (5) 885-895
  • 141 Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 2001; 45 (6) 935-939
  • 142 Clark CA, Le Bihan D. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 2000; 44 (6) 852-859
  • 143 Jansons KM, Alexander DC. Persistent angular structure: new insights from diffusion MRI data. Dummy version. Inf Process Med Imaging 2003; 18: 672-683
  • 144 Tournier JD, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 2004; 23 (3) 1176-1185
  • 145 Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 2004; 52 (5) 965-978
  • 146 Leergaard TB, White NS, de Crespigny A , et al. Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain. PLoS ONE 2010; 5 (1) e8595
  • 147 Schmahmann JD, Pandya DN, Wang R , et al. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 2007; 130 (Pt 3) 630-653
  • 148 Tournier JD. The biophysics of crossing fibers. In: Jones DK, , ed. Diffusion MRI. Oxford: Oxford University Press; 2011: 465-481
  • 149 Alexander DC, Seunarine KK. Mathematics of crossing fibers. In: Jones DK, , ed. Diffusion MRI. Oxford: Oxford University Press; 2011: 451-464
  • 150 Hess CP, Mukherjee P. Visualizing white matter pathways in the living human brain: diffusion tensor imaging and beyond. Neuroimaging Clin N Am 2007; 17 (4) 407-426 , vii
  • 151 Shin SS, Verstynen T, Pathak S , et al. High-definition fiber tracking for assessment of neurological deficit in a case of traumatic brain injury: finding, visualizing, and interpreting small sites of damage. J Neurosurg 2012; 116 (5) 1062-1069
  • 152 Edlow BL, Takahashi E, Wu O , et al. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol 2012; 71 (6) 531-546
  • 153 Behrens TE, Woolrich MW, Jenkinson M , et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003; 50 (5) 1077-1088
  • 154 Behrens TE, Johansen-Berg H, Woolrich MW , et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003; 6 (7) 750-757
  • 155 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001; 98 (2) 676-682
  • 156 Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage 2007; 37 (4) 1083-1090 , discussion 1097–1099
  • 157 Shulman GL, Fiez JA, Corbetta M , et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 1997; 9: 648-663
  • 158 Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci 1999; 11 (1) 80-95
  • 159 Seeley WW, Menon V, Schatzberg AF , et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007; 27 (9) 2349-2356
  • 160 Tang L, Ge Y, Sodickson DK , et al. Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology 2011; 260 (3) 831-840
  • 161 Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005; 102 (27) 9673-9678
  • 162 Vincent JL, Snyder AZ, Fox MD , et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 2006; 96 (6) 3517-3531
  • 163 Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34 (4) 537-541
  • 164 Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008; 1124: 1-38
  • 165 Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 2008; 42 (3) 1178-1184
  • 166 Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci 2010; 4: 19
  • 167 Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 2004; 23 (2) 137-152
  • 168 Boly M, Phillips C, Tshibanda L , et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function?. Ann N Y Acad Sci 2008; 1129: 119-129
  • 169 Johnson B, Zhang K, Gay M , et al. Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. Neuroimage 2012; 59 (1) 511-518
  • 170 Zhang K, Johnson B, Gay M , et al. Default mode network in concussed individuals in response to the YMCA physical stress test. J Neurotrauma 2012; 29 (5) 756-765
  • 171 Sharp DJ, Beckmann CF, Greenwood R , et al. Default mode network functional and structural connectivity after traumatic brain injury. Brain 2011; 134 (Pt 8) 2233-2247
  • 172 Hillary FG, Slocomb J, Hills EC , et al. Changes in resting connectivity during recovery from severe traumatic brain injury. Int J Psychophysiol 2011; 82 (1) 115-123
  • 173 Bonnelle V, Leech R, Kinnunen KM , et al. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci 2011; 31 (38) 13442-13451
  • 174 Mayer AR, Mannell MV, Ling J, Gasparovic C, Yeo RA. Functional connectivity in mild traumatic brain injury. Hum Brain Mapp 2011; 32 (11) 1825-1835
  • 175 Bonnelle V, Ham TE, Leech R , et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A 2012; 109 (12) 4690-4695
  • 176 Stevens MC, Lovejoy D, Kim J, Oakes H, Kureshi I, Witt ST. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav 2012; 6 (2) 293-318
  • 177 Singh KD, Fawcett IP. Transient and linearly graded deactivation of the human default-mode network by a visual detection task. Neuroimage 2008; 41 (1) 100-112
  • 178 Vanhaudenhuyse A, Demertzi A, Schabus M , et al. Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 2011; 23 (3) 570-578
  • 179 Boly M, Balteau E, Schnakers C , et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A 2007; 104 (29) 12187-12192
  • 180 Thibaut A, Bruno MA, Chatelle C , et al. Metabolic activity in external and internal awareness networks in severely brain-damaged patients. J Rehabil Med 2012; 44 (6) 487-494
  • 181 Biswal BB, Mennes M, Zuo XN , et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A 2010; 107 (10) 4734-4739
  • 182 Greicius MD, Kiviniemi V, Tervonen O , et al. Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 2008; 29 (7) 839-847
  • 183 Fukunaga M, Horovitz SG, van Gelderen P , et al. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn Reson Imaging 2006; 24 (8) 979-992
  • 184 Boveroux P, Vanhaudenhuyse A, Bruno MA , et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010; 113 (5) 1038-1053
  • 185 Yan C, Liu D, He Y , et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS ONE 2009; 4 (5) e5743
  • 186 Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW. Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 2010; 52 (2) 571-582
  • 187 Kwong KK, Belliveau JW, Chesler DA , et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89 (12) 5675-5679
  • 188 Ogawa S, Tank DW, Menon R , et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992; 89 (13) 5951-5955
  • 189 Smith K. Brain imaging: fMRI 2.0. Nature 2012; 484 (7392) 24-26
  • 190 Kasahara M, Menon DK, Salmond CH , et al. Traumatic brain injury alters the functional brain network mediating working memory. Brain Inj 2011; 25 (12) 1170-1187
  • 191 Kasahara M, Menon DK, Salmond CH , et al. Altered functional connectivity in the motor network after traumatic brain injury. Neurology 2010; 75 (2) 168-176
  • 192 Mayer AR, Yang Z, Yeo RA , et al. A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging Behav 2012; 6 (2) 343-354
  • 193 Newsome MR, Scheibel RS, Hanten G , et al. Brain activation while thinking about the self from another person's perspective after traumatic brain injury in adolescents. Neuropsychology 2010; 24 (2) 139-147
  • 194 Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992; 23 (1) 37-45
  • 195 Fernández-Seara MA, Edlow BL, Hoang A, Wang J, Feinberg DA, Detre JA. Minimizing acquisition time of arterial spin labeling at 3T. Magn Reson Med 2008; 59 (6) 1467-1471
  • 196 Chen Y, Wang DJ, Detre JA. Test-retest reliability of arterial spin labeling with common labeling strategies. J Magn Reson Imaging 2011; 33 (4) 940-949
  • 197 Kim J, Whyte J, Patel S , et al. Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: a perfusion fMRI study. Psychopharmacology (Berl) 2012; 222 (1) 47-57
  • 198 Helle M, Norris DG, Rüfer S, Alfke K, Jansen O, van Osch MJ. Superselective pseudocontinuous arterial spin labeling. Magn Reson Med 2010; 64 (3) 777-786
  • 199 Detre JA, Wang J. Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol 2002; 113 (5) 621-634
  • 200 Kim J, Whyte J, Patel S , et al. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study. J Neurotrauma 2010; 27 (8) 1399-1411
  • 201 Kim J, Whyte J, Patel S , et al. A perfusion FMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. Neurorehabil Neural Repair 2012; 26 (7) 870-880
  • 202 Ge Y, Patel MB, Chen Q , et al. Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Inj 2009; 23 (7) 666-674
  • 203 Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008; 60 (6) 1488-1497
  • 204 Wu WC, Fernández-Seara M, Detre JA, Wehrli FW, Wang J. A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 2007; 58 (5) 1020-1027
  • 205 Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT. Velocity-selective arterial spin labeling. Magn Reson Med 2006; 55 (6) 1334-1341
  • 206 Wu WC, Edlow BL, Elliot MA, Wang J, Detre JA. Physiological modulations in arterial spin labeling perfusion magnetic resonance imaging. IEEE Trans Med Imaging 2009; 28 (5) 703-709
  • 207 Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol 2007; 28 (10) 1850-1858
  • 208 Reivich M, Kuhl D, Wolf A , et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979; 44 (1) 127-137
  • 209 Greenberg JH, Reivich M, Alavi A , et al. Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique. Science 1981; 212 (4495) 678-680
  • 210 Laureys S, Goldman S, Phillips C , et al. Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. Neuroimage 1999; 9 (4) 377-382
  • 211 Bruno MA, Majerus S, Boly M , et al. Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J Neurol 2012; 259 (6) 1087-1098
  • 212 Schiff ND, Ribary U, Moreno DR , et al. Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain. Brain 2002; 125 (Pt 6) 1210-1234
  • 213 Boly M, Faymonville ME, Peigneux P , et al. Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol 2004; 61 (2) 233-238
  • 214 Xu V, Chan H, Lin AP , et al. MR spectroscopy in diagnosis and neurological decision-making. Semin Neurol 2008; 28 (4) 407-422
  • 215 Ling G, Bandak F, Armonda R, Grant G, Ecklund J. Explosive blast neurotrauma. J Neurotrauma 2009; 26 (6) 815-825
  • 216 Bell RS, Vo AH, Neal CJ , et al. Military traumatic brain and spinal column injury: a 5-year study of the impact blast and other military grade weaponry on the central nervous system. J Trauma 2009; 66 (4, Suppl) S104-S111
  • 217 Warden D. Military TBI during the Iraq and Afghanistan wars. J Head Trauma Rehabil 2006; 21 (5) 398-402
  • 218 Vanderploeg RD, Schwab K, Walker WC , et al; Defense and Veterans Brain Injury Center Study Group. Rehabilitation of traumatic brain injury in active duty military personnel and veterans: Defense and Veterans Brain Injury Center randomized controlled trial of two rehabilitation approaches. Arch Phys Med Rehabil 2008; 89 (12) 2227-2238
  • 219 Zoroya G. For troops with brain trauma, a long journey back. USA Today. Available at: http://usatoday30.usatoday.com/news/military/2010-07-29-1Aawakening29_CV_N.htm . Accessed November 12, 2012
  • 220 Nakagawa A, Manley GT, Gean AD , et al. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research. J Neurotrauma 2011; 28 (6) 1101-1119
  • 221 Ropper A. Brain injuries from blasts. N Engl J Med 2011; 364 (22) 2156-2157
  • 222 Armonda RA, Bell RS, Vo AH , et al. Wartime traumatic cerebral vasospasm: recent review of combat casualties. Neurosurgery 2006; 59 (6) 1215-1225 , discussion 1225
  • 223 Bazarian JJ, Donnelly K, Peterson DR, Warner GC, Zhu T, Zhong J. the relation between posttraumatic stress disorder and mild traumatic brain injury acquired during Operations Enduring Freedom and Iraqi Freedom: a diffusion tensor imaging study. J Head Trauma Rehabil 2012; . [Epub ahead of print]
  • 224 Levin HS, Wilde E, Troyanskaya M , et al. Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. J Neurotrauma 2010; 27 (4) 683-694
  • 225 Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N Engl J Med 2008; 358 (5) 453-463
  • 226 McKee AC, Cantu RC, Nowinski CJ , et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 2009; 68 (7) 709-735
  • 227 Slobounov S, Gay M, Johnson B, Zhang K. Concussion in athletics: ongoing clinical and brain imaging research controversies. Brain Imaging Behav 2012; 6 (2) 224-243
  • 228 Report of the Quality Standards Subcommittee. Practice parameter: the management of concussion in sports (summary statement). Neurology 1997; 48 (3) 581-585
  • 229 Alexander MP. Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology 1995; 45 (7) 1253-1260
  • 230 Zhang K, Johnson B, Pennell D, Ray W, Sebastianelli W, Slobounov S. Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI & DTI study. Exp Brain Res 2010; 204 (1) 57-70
  • 231 Gandy S, Dekosky ST. APOE ε4 status and traumatic brain injury on the gridiron or the battlefield. Sci Transl Med 2012; 4 (134) ed4
  • 232 Andrews K, Murphy L, Munday R, Littlewood C. Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 1996; 313 (7048) 13-16
  • 233 Childs NL, Mercer WN, Childs HW. Accuracy of diagnosis of persistent vegetative state. Neurology 1993; 43 (8) 1465-1467
  • 234 Schnakers C, Vanhaudenhuyse A, Giacino J , et al. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 2009; 9: 35
  • 235 Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 2004; 85 (12) 2020-2029
  • 236 Giacino JT, Whyte J, Bagiella E , et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med 2012; 366 (9) 819-826
  • 237 Whyte J, Myers R. Incidence of clinically significant responses to zolpidem among patients with disorders of consciousness: a preliminary placebo controlled trial. Am J Phys Med Rehabil 2009; 88 (5) 410-418
  • 238 Schiff ND, Giacino JT, Kalmar K , et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 2007; 448 (7153) 600-603
  • 239 Fins JJ. The ethics of measuring and modulating consciousness: the imperative of minding time. Prog Brain Res 2009; 177: 371-382
  • 240 Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science 2006; 313 (5792) 1402
  • 241 Monti MM, Vanhaudenhuyse A, Coleman MR , et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med 2010; 362 (7) 579-589
  • 242 Ropper AH. Cogito ergo sum by MRI. N Engl J Med 2010; 362 (7) 648-649
  • 243 Coleman MR, Rodd JM, Davis MH , et al. Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 2007; 130 (Pt 10) 2494-2507
  • 244 Coleman MR, Davis MH, Rodd JM , et al. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain 2009; 132 (Pt 9) 2541-2552
  • 245 Schiff ND, Rodriguez-Moreno D, Kamal A , et al. fMRI reveals large-scale network activation in minimally conscious patients. Neurology 2005; 64 (3) 514-523
  • 246 Fernández-Espejo D, Junqué C, Vendrell P , et al. Cerebral response to speech in vegetative and minimally conscious states after traumatic brain injury. Brain Inj 2008; 22 (11) 882-890
  • 247 Laureys S, Lemaire C, Maquet P, Phillips C, Franck G. Cerebral metabolism during vegetative state and after recovery to consciousness. J Neurol Neurosurg Psychiatry 1999; 67 (1) 121
  • 248 Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ , et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010; 133 (Pt 1) 161-171
  • 249 Silva S, Alacoque X, Fourcade O , et al. Wakefulness and loss of awareness: brain and brainstem interaction in the vegetative state. Neurology 2010; 74 (4) 313-320
  • 250 Liu AA, Voss HU, Dyke JP, Heier LA, Schiff ND. Arterial spin labeling and altered cerebral blood flow patterns in the minimally conscious state. Neurology 2011; 77 (16) 1518-1523
  • 251 Laureys S, Schiff ND. Coma and consciousness: paradigms (re)framed by neuroimaging. Neuroimage 2012; 61 (2) 478-491
  • 252 Bardin JC, Schiff ND, Voss HU. Pattern classification of volitional functional magnetic resonance imaging responses in patients with severe brain injury. Arch Neurol 2012; 69 (2) 176-181
  • 253 Bardin JC, Fins JJ, Katz DI , et al. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain 2011; 134 (Pt 3) 769-782
  • 254 Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1949; 1 (4) 455-473
  • 255 Steriade M. Arousal: revisiting the reticular activating system. Science 1996; 272 (5259) 225-226
  • 256 Kinomura S, Larsson J, Gulyás B, Roland PE. Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 1996; 271 (5248) 512-515
  • 257 Krzywinski M, Schein J, Birol I , et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19 (9) 1639-1645
  • 258 Sporns O. Networks of the Brain. Cambridge, MA: MIT Press; 2011
  • 259 Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain. PLOS Comput Biol 2005; 1 (4) e42
  • 260 Hagmann P. From diffusion MRI to brain connectomics [doctoral thesis]. Programme Doctoral en Informatique et Communications. Lausanne, EPFL: Université de Lausanne; 2005: 1-122
  • 261 Irimia A, Chambers MC, Torgerson CM, Horn JD. Circular representation of human cortical networks for subject and population-level connectomic visualization. Neuroimage 2012; 60 (2) 1340-1351
  • 262 Irimia A, Chambers MC, Torgerson CM , et al. Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury. Front Neurol 2012; 3: 10
  • 263 Edlow BL, Diamond EL. Teaching neuroimages: restricted diffusion in the corpus callosum after traumatic diffuse axonal injury. Neurology 2010; 75 (17) e69
  • 264 Catani M, Jones DK, ffytche DH. Perisylvian language networks of the human brain. Ann Neurol 2005; 57 (1) 8-16
  • 265 Worsley K. Statistical analysis of activation images. In: Jezzard P, Matthews PM, Smith SM, , eds. Functional MRI: An Introduction to Methods. Oxford: Oxford University Press; 2001
  • 266 Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010; 103 (1) 297-321